

Robot Skill Adaptation

via Soft Actor-Critic Gaussian Mixture Models

Sassan Mokhtar, Rahul Hegde, Martin Condor

Motivation

- Objective: Enabling robots to learn low-level manipulation skills in a scalable and structured manner
- Two different approaches:
 - Model-based (dynamical system): + data-efficient, + trajectory reasoning, incompetence in handling high-dimensional data, - susceptible to noise
 - Data-driven (reinforcement learning): + high expressiveness, + robust to noise, data hungry
- Idea: Hybrid approach: Learn a dynamical system by GMM from few demonstration, then refine the GMM by SAC

Gaussian Mixture Models

Soft Actor-Critic method

- GMM: Parametric density estimation method
- GMR: Regression approach to model probability distributions

Problem Formulation:

- Dynamical systems are aimed to represent the motion progression of robot
- Assume the robot skill model is an autonomous dynamical system

 $x' = f_{\theta}(x) + \epsilon$

• **Training**: Optimize the GMM by EM to represent the joint distribution of the pose and velocity of the robot

p(x, x')

• Prediction: Generate a new robot pose by sampling the conditional distribution

$$x'_t \sim \underbrace{p(x'|x = x_t)}_{\approx f_\theta}$$

Once GMM learned the trajectory space of the skill, the refinement can be performed by robot's interaction with the world

Autonomous Intelligent Systems

- The refinement of the GMM can be formulated as a reinforcement learning problem
- The SAC is used to learn the skill refinement policy
 - Action space: GMM parameters
 - State space: robot pose, proprioceptive measurements, latent representation of the sensory images

Autoencoders

- Including images in the state space lead to massive computational cost
- Idea: Use an autoencoder and append the latent representation of the images in the state space

Experimental Results

- We collect 150 different trajectories for the "open the drawer" task from the Calvin dataset
- GMM fit on 30 close trajectories
 - and test on 90 random trajectories

Calvin Environment

	Training Acc	Test Acc
3 components	36.6%	30%
10 components	36.6%	30%

		Training Acc	Test Acc 56.6% 90%	
_	3 components	53.3%		
_	10 components	96.6%		
MN	I + SAC + AE:		20000	Number of components Number of components
Au	Autoencoder trains concurrently with SAC			

- Utilizing autoencoder results in more

GMM + SAC:

GMM:

After N interactions of the agent with the environment, the SAC updates the GMM model accordingly

