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Introduction

Merton’s Portfolio problem

The value of the portfolio X (t), consists of a risky assets,
S(t) = u(t)X (t), and risk less bonds with risk-free rate r ,
B(t) = (1− u(t))X (t), where u(t) ∈ [0, 1] is the control and

dS = a1Sdt + a2SdW , dB = rBdt

According to the self-financing considerations,

dXs = (a1us + r(1− us))Xsds + a2usXsdWs , for s > t

Xt = x

For a given function g the cost function is defined as,

Ct,x(u) = E[g(X (T ))|Xt = x ]

The goal is to determine the Markov control function that maximizes the
cost function.
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Introduction

Merton’s Portfolio problem

The value function is: V (t, x) = maxu Ct,x(u), which solves the HJB
equation:

Vt +H(t, x ,Vx ,Vxx) = 0

V (T , x) = g(x)

for the Hamiltonian:

H(t, x , p,w) = max
u

(a1u + r(1− u)xp +
a2

2u2

2
x2w)

→ Solving this equation gives us the optimal strategy, which maximizes
the expected return of the risk neutral investor.
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Introduction

Problem setting

What about the risk-averse investor?

Goal: To extend dynamic optimal control problems, which are
risk-neutral, to a risk-averse environment.
→ In this setting, a decision maker suffers an uncertain amount of
cost and his goal is to manage and minimize the total costs.

Risk-averse decision maker: A person who prefer a certain outcome
with a lower pay-off over an uncertain outcome with a higher pay-off.

Risk measures: Therefore, we need to introduce some risk measures
to quantify the preferences of the decision makers.
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Risk Measures

Value at Risk (VaR)

A risk measure which has been widely used since 1980. In the late
1980s, it was integrated by JP Morgan on a firm-wide level into its
risk-management system.

VaR is defined as the minimum level of loss at a given confidence
level for a predefined time horizon.
→ A portfolio with a 1-day 99% VaR equal to 1 million means over
the horizon of 1 day, the portfolio may lose more than 1 million with
probability equal to 1%.

The VaR at level β̂ ∈ (0, 1) of the random variable X is defined as:

VaRβ̂(X ) = sup
x
{x |P(X ≤ x) ≤ β̂}
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Risk Measures

Value at Risk (VaR)

Figure: The VaR at 95% risk level of the random variable X
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Risk Measures

Coherent Risk Measures

Can we find a set of desirable properties that a risk measure should satisfy?
→ An answer is given by Artzner et. al. [1]. They provide an axiomatic
definition of a functional which they call a coherent risk measure (R).

1 Monotonicity: if Y ≤ Y ′, then R(Y ) ≤ R(Y ′)

2 Subadditivity: R(Y + Y ′) ≤ R(Y ) +R(Y ′)

3 Translation equivariance: R(Y + c) = R(Y ) + c for c ∈ R
4 Positive homogeneity: R(λY ) = λ.R(Y ) for λ > 0

VaR does not satisfies Subadditivity property.
→ Next, we introduce a risk measure, which satisfies the above axioms
and thus is a coherent risk measure.
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Risk Measures

Entropic Value at Risk (EVaR) Ahmadi-Javid [5]

Entropic VaR: Coherent risk measure that is the tightest possible
upper bound obtained from the Chernoff inequality.
Chernoff inequality: For any constant γ and the random variable X ,
whose moment generating function MX (`) exists for ` > 0; it holds,

P(X ≥ γ) ≤ e−`γMX (`) = e−`γE[e`X ]

By solving the equation e−`γMX (`) = β̂ with respect to γ for
β̂ ∈ [0, 1],

γ(β̂, `) =
1

`
log
(MX (`)

β̂

)
for which we have P(X ≥ γ(β̂)) ≤ β̂. In fact, for each ` > 0, γ(β̂) is
an upper bound for VaR1−β̂. We define the best upper bound of this
type as EVaR.
By changing variable β = −log β̂, we obtain the following formula for
EVaR, for β ∈ [0,∞)

EVaRβ(X ) = inf
`>0

1

`

(
β + logE[e`X ]

)
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Risk Measures

EVaR of Gaussians

For a normally distributed random variable X ∼ N (µ, σ2) with σ ≥ 0 and
a, b ∈ R it holds that:

EVaRβ(a + bX ) = a + bµ+ σ|b|
√

2β (1)

Proof:

It holds that E[e`X ] = exp(µ`+ 1
2`

2σ2) and thus,

1

`
β +

1

`
log
(
eµ`+

1
2
`2σ2)

=
1

`
β + µ+

1

2
`σ2

which attains its minimum at `∗ = 1
σ

√
2β. Thus,

EVaRβ(X ) =
1

`∗
β + µ+

1

2
`∗σ2 = µ+ σ

√
2β

Finally, using the fact that a + bX ∼ N (a + bµ, b2σ2) terminates the
proof.
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Risk Measures

Nested EVaR

Classical, non-nested, risk measures only asses the accumulated
position at time T , so that the risk manager can never intervene.

Thus, we introduce nested risk measures which allow quantifying risk
via dynamic programming equations.

Definition 1 (Nested risk measures)

For the random variable Y = (Yt)t∈[0,T ] adapted to the filtration Ft , the
risk measure R, and the partition P = [0 = t0 < ... < ti < ... < tn = T ],
the nested risk measures is defined as:

if i = n − 1 : R{tj}
n
j=n−1(Y |Ftn−1) := Rtn−1(Y |Ftn−1)

if i < n − 1 : R{tj}
n
j=i (Y |Fti ) := Rti

(
R{tj}

n
j=i+1(Y |Fti+1)

∣∣∣Fti

)
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Risk Measures

Nested Risk Measures

Definition 2 (Nested Entropic Value at Risk)

For the partition P and a vector of risk levels
β := (βti ∆ti , ..., βtn−1∆tn−1), the nested EVaR is:

if i = n − 1 :

nEVaR
{tj}nj=n−1

β (Y |Ftn−1) := EVaRβtn−1 .∆tn−1(Y |Ftn−1)

if i < n − 1 :

nEVaR
{tj}nj=i

β (Y |Fti ) := EVaRβti .∆ti

(
nEVaR

{tj}nj=i+1

β (Y |Fti+1)
∣∣∣Fti

)
Often, the risk evaluation of R0:T (YT ) of the terminal value YT of some
stochastic process Y is of interest.
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Risk Measures

Nested Risk Measures

Proposition 1 (Pichler and Schlotter [2])

For YT = Yti +
∑n−1

j=i ∆Ytj and the partition
P = [0 = t0 < ... < ti < ... < tn = T ], it holds that

if i = n − 1 :

R{tj}
n
j=n−1(YT |Ftn−1) := Ytn−1 +Rtn−1(∆Ytn−1 |Ftn−1)

if i < n − 1 :

R{tj}
n
j=i (YT |Fti ) := Rti

(
R{tj}

n
j=i+1(YT |Fti+1)

∣∣∣Fti

) (2)

Therefore, it is sufficient to study conditional risk evaluations of
increments.
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Risk Measures

Nested EVaR for Gaussian Random Walk

Let W = (Wt)t∈P be a Wiener process evaluated on the partition P.
Also, let β := (βt0∆t0, ..., βtn−1∆tn−1) be a vector of risk levels. Then,

nEVaRPβ (WT ) =
n−1∑
i=0

∆ti
√

2βti

Proof:

Note that Wti+1 −Wti ∼ N (0, ti+1 − ti ) and by (1), the conditional EVaR
is:

EVaRβti ∆ti (Wti+1 |Wti ) = Wti +
√

∆ti
√

2βti ∆ti

Iterating as in (2), shows

nEVaRPβ (WT ) =
n−1∑
i=0

√
∆ti
√

2βti ∆ti =
n−1∑
i=0

∆ti
√

2βti
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Risk Measures

Nested EVaR in Continuous Time

Up to now, the nested risk measures in discrete time on partition
P = [0 = t0 < ... < tn = T ] of the interval T = [0,T ] is considered.

The next step is to refine the partition to obtain a limit of the nEVaR
in continuous time.

→ First, extend the vector of risk levels to continuous time by introducing
the function β : [0,T ]→ [0,∞) called the risk rate. Then, extend the
definition of the nEVaR to risk rates β(.).

Definition 3

For a given finite partition P and the Riemann integrable risk rate β(.),
the nEVaR is defined as,

nEVaRPβ(.)(Y ) := nEVaRP
β̂

(Y )

where the vector of risk levels is β̂ := (β(t0)∆t0, ..., β(tn−1)∆tn−1).
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Risk Measures

Nested EVaR in Continuous Time

Given the Riemann integrable risk rate β(.), it is time to investigate the
relationship of nEVaR for different partitions.

Proposition 2 (Pichler and Schlotter [2])

Let Y be a random variable and β : [0,T ]→ [0,∞) be a piecewise
constant risk rate. For a partition P1, fine enough to contain all points of
discontinuity of β and for every refinement P included in P1, the following
inequality holds true:

nEVaRPβ(.)(Y ) ≤ nEVaRP1

β(.)(Y )

Proof:
It is enough to consider the partitions P1 = {0 = t0 < t2 = T} and
P = {0 = t0 < t1 < t2 = T} of [0,T ] and the constant risk rate β(.).
Then, the general case follows by induction.
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Risk Measures

Proof

According to the definition of the EVaR,

EVaRβ(t1)∆t1
(Y |Ft1) = inf

`

1

`

(
β(t1)∆t1 + log(E[e`Y

∣∣Ft1 ])
)

By nesting,

nEVaRPβ(.)(Y ) =

inf
x

1

x

(
β(t0)∆t0+logE

[
exp

(
x
(

inf
`

1

`

(
β(t1)∆t1+log(E[e`Y |Ft1 ])

)))∣∣∣Ft0

])
Choose ` = x ,

nEVaRPβ(.) ≤ inf
x

1

x

(
β(t0)∆t0 + β(t1)∆t1 + log(E[E[exY |Ft1 ]|Ft0 ])

)
= EVaRβ(t0)∆t0+β(t1)∆t1

(Y )

But β(.) is constant. Thus,

nEVaRPβ(.)(Y ) ≤ EVaRβ(t0)(∆t0+∆t1)(Y ) = nEVaRP1

β(.)(Y )
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Risk Measures

Nested EVaR in Continuous Time

Now, we are able to extend the nEVaR to continuous time:

Definition 4 (nEVaR in continuous time)

For β(.) Riemann integrable,

nEVaRt:T
β(.)(Y |Ft) := essinfP,β̃(.)≥β(.)nEVaRP

β̃(.)
(Y |Ft)

where the infimum is among all partitions P ⊂ [t,T ] and piecewise
constant functions β̃(.) ≥ β(.)

According to proposition (2), the essential infimum in the definition of the
continuous nEVaR can be replaced by the limit of nonincreasing sequence.
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Risk Measures

Nested EVaR of Wiener Process

The nested EVaR of the Wiener process W on T = [0,T ] for a risk rate
β : T → [0,∞) is

nEVaR0:T
β(.)(WT ) =

∫ T

0

√
2β(t)dt

Proof:

Consider the partition P of size n of T . By nesting:

nEVaR0:T
β(.)(WT ) =

n−1∑
i=0

√
∆ti
√

2β(ti )∆ti =
n−1∑
i=0

∆ti
√

2β(ti )

Taking the limit n→∞ shows that

nEVaR0:T
β(.)(WT ) =

∫ T

0

√
2β(t)dt

Sassan Mokhtar Risk-Averse Optimal Control May 15, 2020 21 / 62



Risk-averse Optimal Control

Table of Contents

1 Introduction

2 Risk Measures

3 Risk-averse Optimal Control

4 Risk-Averse Merton’s Portfolio Problem

Sassan Mokhtar Risk-Averse Optimal Control May 15, 2020 22 / 62



Risk-averse Optimal Control

Infinitesimal Generator

The infinitesimal generator is the differential operator describing the
evolution of the system.
Goal: To introduce the generator in the presence of risk
→ which extends the notion of the infinitesimal generator of Markov
processes by replacing the expectation by a risk measure.
This enables us to formulate and solve risk-averse control problems.

Infinitesimal generator

Recall the generator,

Gφ(t, x) := lim
∆t→0

1

∆t
E
[
φ(t + ∆t,Xt+∆t)− φ(t, x)

∣∣Xt = x
]

Then, for the SDE dXt = b(Xt , t)dt + σ(Xt , t)dWt it holds:

G =
∂

∂t
+ b

∂

∂x
+

1

2
σ2 ∂

2

∂x2
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Risk-averse Optimal Control

Entropic Generator

Proposition 3 (Entropic generator, Pichler and Schlotter [2])

For the entropic generator:

Gφ(t, x) := lim
∆t→0

1

∆t
EvaRβ.∆t

[
φ(t + ∆t,Xt+∆t)− φ(t, x)

∣∣Xt = x
]

It holds that

Gφ =
∂

∂t
φ+ b

∂

∂x
φ+

1

2
σ2 ∂

2

∂x2
φ+

√
2β
∣∣∣σ. ∂
∂x
φ
∣∣∣

The entropic risk generator can be decomposed as the sum of the

classical generator and the nonlinear term
√

2β
∣∣∣σ. ∂∂xφ∣∣∣.

This additional risk term can be interpreted as a directed drift term
where the uncertain drift ∂φ

∂x (t,Xt) is scaled with volatility σ.

The coefficient
√

2β(.) expresses risk aversion.
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Risk-averse Optimal Control

Sketch of Proof

Assumption 1

→ Hölder continuity: Assume that there exist a Ĉ > 0 and η ∈ (0, 1/2)
such that

|σ(u, y)− σ(s, x)| ≤ Ĉ |u − s|η

uniformly for all x , y ∈ R.
→ Also, assume that φ ∈ C 1,2(T ,R) such that ∂φ

∂x is bounded.

For the risk rate β, the risk generator based on the EVaR is:

Gφ(t, x) := lim
h→0

1

h

(
EVaRβ(t).hφ(t + h,Xt+h|Xt = x)− φ(t, x)

)
for those functions that the limit exists.
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Risk-averse Optimal Control

Sketch of Proof

Apply Itô formula:

φ(t + h,Xt+h)− φ(t,Xt) =

∫ t+h

t

(∂φ
∂t

+ b
∂φ

∂x
+
σ2

2

∂φ

∂x2

)
(s,Xs)ds+∫ t+h

t

(
σ
∂φ

∂x

)
(s,Xs)dWs

For convenience, set f1(t, x) :=
(
∂φ
∂t + b ∂φ∂x + σ2

2
∂φ
∂x2

)
(t, x) and

f2(t, x) :=
(
σ ∂φ∂x

)
(t, x)

Thus, we can rewrite G as:

Gφ(t, x) :=

lim
h→0

1

h
EVaRβ(t).h

[ ∫ t+h

t
f1(s,Xs)ds +

∫ t+h

t
f2(s,Xs)dWs

∣∣∣Xt = x
]
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Risk-averse Optimal Control

Sketch of Proof

Now, the goal is to show that for each (t, x), the following inequality holds,∣∣Gφ(t, x)− f1(t, x)−
√

2β(t)|f2(t, x)|
∣∣ ≤ 0

Using subadditivity of EVaR and the triangle inequality:

0 ≤ lim
h→0

∣∣∣EVaRβ(t).h

[1

h

∫ t+h

t
f1(s,Xs)ds − f1(t, x)

∣∣∣Xt = x
]∣∣∣

+ lim
h→0

∣∣∣EVaRβ(t).h

[1

h

∫ t+h

t
f2(s,Xs)dWs −

√
2β(t)|f2(t, x)|

∣∣∣Xt = x
]∣∣∣
(3)

Consider each term separately.
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Risk-averse Optimal Control

Sketch of Proof

In the case of the first term, note that s 7→ f1(s,Xs)− f1(t, x) is
continuous almost surely and hence the mean value theorem for definite
integrals implies that there exists a ξ ∈ [t, t + h] such that

1

h

∫ t+h

t
f1(s,Xs)ds − f1(t, x) = f1(ξ,Xξ)− f1(t, x)

Then, the subadditivity of EVaR yields,

lim
h→0

∣∣∣EVaRβ(t).h

(1

h

∫ t+h

t
f1(s,Xs)− f1(t, x)ds

∣∣∣Xt = x
)∣∣∣ = 0
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Risk-averse Optimal Control

Sketch of Proof

In the case of the second term, note that we have the following bound,

EVaRβ(t).h

[1

h

∫ t+h

t
f2(s,Xs)dWs

∣∣∣Xt = x
]
≤

EVaRβ(t).h

[1

h

∫ t+h

t
f2(s,Xs)− f2(t, x)dWs

∣∣∣Xt = x
]
+

EVaRβ(t).h

[1

h

∫ t+h

t
f2(t, x)dWs

∣∣∣Xt = x
]

where EVaRβ(t).h

[
1
h

∫ t+h
t f2(t, x)dWs

∣∣∣Xt = x
]

=
√

2β(t)|f2(t, x)|. Thus,

(3) ≤ lim
h→0

∣∣∣EVaRβ(t).h

[1

h

∫ t+h

t
f2(s,Xs)− f2(t, x)dWs

∣∣∣Xt = x
]∣∣∣
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Risk-averse Optimal Control

Sketch of Proof

Therefore, it only remains to show that:

lim
h→0

∣∣∣EVaRβ(t).h

[1

h

∫ t+h

t
f2(s,Xs)− f2(t, x)dWs

∣∣∣Xt = x
]∣∣∣ = 0

Form the stochastic integral Mh :=
∫ t+h
t f2(s,Xs)− f2(t, x)dWs , which is

a continuous martingale with bounded quadratic variation,

〈M〉h ≤
Ĉ 2h1+2η

2η + 1
(4)

Then, according to the definition of the EVaR,

1

h
EVaRβ(t).h(Mh|Xt = x) = inf

`>0

1

h`

(
β(t).h + log(E[exp(`Mh)])|Xt = x

)
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Risk-averse Optimal Control

Sketch of Proof

But Mh is a martingale and satisfies Novikov’s condition and thus
E[exp(`Mh − `2 〈M〉h

2 )] = 1. Combining this with (4) yield,

E[e`Mh ] ≤ exp
(`2

2
.
Ĉ 2h2η+1

2η + 1

)
Therefore,

1

h
EVaRβ(t).h(Mh|Xt = x) ≤ inf

`>0

1

h`

(
β(t).h +

`2

2
.
Ĉ 2h2η+1

2η + 1

)
= inf

`>0

β(t)

`
+
`

2
.
Ĉ 2h2η

2η + 1
=
√

2β(t).
Ĉhη√
2η + 1

We conclude that:

lim
h→0

∣∣∣EVaRβ(t).h

[1

h

∫ t+h

t
f2(s,Xs)− f2(t, x)dWs

∣∣∣Xt = x
]∣∣∣ = 0

which completes the proof.
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Risk-averse Optimal Control

Formulation of Risk-averse Optimal Control Problem

After derivation of risk-averse generator, it is time to formulate the
risk-averse optimal control problem and derive the associated HJB
equation.
→ Recall the classical optimal control setup:
Consider the set of admissible controls

U [0,T ] := {u : [0,T ]× Ω→ U|u is adapted}
where U ⊂ R. Consider the controlled stochastic process (X t,x ,u

s ) given
by: (u ∈ U [t,T ])

dX t,x ,u
s = b(s,X t,x ,u

s , u(s))ds + σ(s,X t,x ,u
s , u(s))dWs

X t,x ,u
t = x

(5)

For the running cost h : [0, t]× R× U → R and a terminal cost
g : R→ R, the total cost accumulated over [t,T ] is∫ T

t
h(s,X t,x ,u

s , u(s))ds + g(X t,x ,u
T )
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Risk-averse Optimal Control

Formulation of Risk-averse Optimal Control Problem

→ Now, the risk-averse optimal control problem formulated as follow:

For β : [0,T ]→ [0,∞) define the controlled value function:

V u(t, x) := nEVaRt:T
β(.)

(∫ T

t
h(s,X t,x ,u

s , u(s))ds + g(X t,x ,u
T )

)
Then, optimal value function V : [0,T ]× R→ R,

V (t, x) := inf
u∈U [t,T ]

V u(t, x)

→ The next step is to show that the risk-averse optimal value function V
satisfies the analogue of the dynamic programming principle.
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Risk-averse Optimal Control

Dynamic Programming Principle

Lemma 1

Let (t, x) ∈ [0,T )× R and r ∈ (t,T ], then it holds that,

V (t, x) = inf
u∈U(t,r)

nEVaRt:r
β(.)

(∫ r

t
h(s,X t,x ,u

s , us)ds + V (r ,X t,x ,u
r )

∣∣∣Xt = x
)

(6)

Proof: The proof consists of two steps. In the first step, we start with
V (t, x) and show that it is greater than or equal to the RHS. While, the
step 2 consists of showing the converse inequality by starting with the
RHS.
Step 1:
For every ε > 0 there exist a ũ(.) ∈ U [t,T ] such that
V (t, x) + ε ≥ V ũ(t, x) . On the other hand, based on the definition of the
nested risk measures:
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Risk-averse Optimal Control

Proof

V ũ(t, x) =

nEVaRt:r
β(.)

(
nEVaRr :T

β(.)

(∫ T

t
h(s,X t,x ,ũ

s , ũs)ds + g(X t,x ,ũ
T )

∣∣∣Fr

)∣∣∣Xt = x
)

For each r ∈ (t,T ], the following inequality holds almost surely,

nEVaRr :T
β(.)

(∫ T

r
h(s,X

r ,x(r),ũ
s , ũs)ds + g(X

r ,x(r),ũ
T )

∣∣∣Fr

)
≥ V (r ,X t,x ,ũ

r )

Therefore, subadditivity of nEVaR yields,

V (t, x)+ε ≥ inf
u∈U(t,r)

nEVaRt:r
β(.)

(∫ r

t
h(s,X t,x ,u

s , us)ds+V (r ,X t,x ,u
r )

∣∣∣Xt = x
)

The fact that ε > 0 can be chosen arbitrarily, completes the step 1 proof
(≥).
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Proof

Step 2:
To prove the converse inequality, again consider a fixed ε > 0, then there
exist a ū ∈ U [t, r ] such that,

inf
u∈U(t,r)

nEVaRt:r
β(.)

(∫ r

t
h(s,X t,x ,u

s , us)ds + V (r ,X t,x ,u
r )

∣∣∣Xt = x
)

+ ε

≥nEVaRt:r
β(.)

(∫ r

t
h(s,X t,x ,ū

s , ūs)ds + V (r ,X t,x ,ū
r )

∣∣∣Xt = x
)

Then, we need to define the piecewise control function for [t, r) and [r ,T ].
For doing this, for every y ∈ R let ũ(y) ∈ U [r ,T ] be such that
V (r , y) + ε ≥ V ũ(y)(r , y). We assume that the mapping y 7→ ũ(y) is
measurable and construct the control function:

u0
s =

{
ūs s ∈ [t, r)

ũs(X t,x ,ū
r ) s ∈ [r ,T ]
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Proof

Using monotonicity of nested risk measure,

nEVaRt:r
β(.)

(∫ r

t
h(s,X t,x ,ū

s , ūs)ds + V (r ,X t,x ,ū
r )

∣∣∣Xt = x
)

≥nEVaRt:r
β(.)

(∫ r

t
h(s,X t,x ,ū

s , ūs)ds + V ũs(X t,x,ū
r )(r ,X t,x ,ū

r )
∣∣∣Xt = x

)
− ε

=nEVaRt:T
β(.)

(∫ T

t
h(s,X t,x ,u0

s )ds + g(X t,x ,u0

T )|Xt = x
)
− ε

V u0(t, x)− ε

Combining the inequalities yields,

inf
u∈U(t,r)

nEVaRt:r
β(.)

(∫ r

t
h(s,X t,x ,u

s , us)ds + V (r ,X t,x ,u
r )

∣∣∣Xt = x
)

+ ε

≥ V u0(t, x)− ε ≥ V (t, x)− ε

Again, the fact that ε was arbitrary, finishes the proof.
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Hamilton Jacobi Bellman equation

→ Following theorem provides the only remaining ingredient for deriving
the analogue of the HJB equation,

Theorem 2

Let (Xs)s∈T be the solution of the SDE dXt = b(Xt , t)dt + σ(Xt , t)dWt

with initial condition Xt = x . Also, let h(., .),V (., .) ∈ C 1,2(T ,R) such
that ∂V

∂x is bounded, then it holds (for entropic generator G derived in
Proposition (3) ),

lim
δ→0

1

δ
nEVaRt:t+δ

β(.)

(∫ t+δ

t
h(s,Xs)ds+V (t+δ,Xt+δ)−V (t, x)

∣∣∣Xt = x
)

=

h(t, x) + GV (t, x) (7)
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Hamilton Jacobi Bellman equation

Taking the limit r → t in the dynamic programming principle (6) yields,

0 = inf
u∈U(t,r)

1

r − t
nEVaRt:r

β(.)

(∫ r

t
h(s,X t,x ,u

s , u(s))ds

+ V (r ,X t,x ,u
r )− V (t, x)

∣∣∣Xt = x
)

Combining with theorem, results in:

0 = inf
u
{h(t, x , u) + GV (t, x)}

= inf
u

{
h(t, x , u) +

∂V

∂t
(t, x) + b(t, x , u)

∂V

∂x
(t, x) +

σ2(t, x , u)

2

∂2V

∂x2

+
√

2β(t, x)
∣∣∣σ(t, x , u)

∂V

∂x
(t, x)

∣∣∣}

Sassan Mokhtar Risk-Averse Optimal Control May 15, 2020 39 / 62



Risk-averse Optimal Control

Hamilton Jacobi Bellman equation

Therefore,

Corollary 3

the risk-averse value function V (t, x) solves the HJB equation,

∂V

∂t
+H(t, x ,

∂V

∂x
,
∂2V

∂x2
) = 0

V (T , x) = g(x)

with Hamiltonian function

H(t, x , p,w) := inf
u

{
b(u).p +

1

2
σ(u)2.w + h(u) +

√
2β.|σ(u)p|

}
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Proof of Theorem (2)

The idea of proof is to show that:

lim
δ→0

∣∣∣∣1δ nEVaRt:t+δ
β(.)

(∫ t+δ

t
h(s,Xs)ds + V (t + δ,Xt+δ)− V (t, x)

∣∣∣Ft

)
−

h(t, x)− GV (t, x)

∣∣∣∣ = 0

Also, recall that the entropic generator is defined as,

GV (t, x) = lim
δ→0

1

δ
EVaRβ(t).δ

(
V (t + δ,Xt+δ|Xt = x)− V (t, x)

)
Let start with LHS of (7), which can be bounded from above using the
subadditivity of coherent risk measures:

lim
δ→0

nEVaRt:t+δ
β(.)

(1

δ

∫ t+δ

t
h(s,Xs)ds

∣∣∣Xt = x
)

+

lim
δ→0

nEVaRt:t+δ
β(.)

(V (t + δ,Xt+δ)− V (t, x)

δ

∣∣∣Xt = x
)
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Proof of Theorem (2)

where the first part converges to h(t, x) following the arguments in the
proof of entropic generator.
The second term can be written as a limit over all possible partitions P of
[t, t + δ] given by P = (t0, ..., tn)

lim
δ→0

lim
‖P‖→0

EVaRβ(t0)∆t0

(
...

EVaRβ(tn−1)∆tn−1

(V (t + δ,Xt+δ)− V (t, x)

δ

∣∣∣Ftn−1

)
...
∣∣∣Ft0

)
this limit converges uniformly in δ for fixed P and thus can be
interchanged. Then, definition of the entropic generator yields,

lim
δ→0

nEVaRt:t+δ
β(.)

(V (t + δ,Xt+δ)− V (t, x)

δ

∣∣∣Ft0

)
=

lim
δ→0

EVaRβ(t0)δ

(V (t + δ,Xt+δ)− V (t, x)

δ

∣∣∣Ft0

)
= GV (t, x)

which leads to the desired expression and terminates the proof.
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Classical Merton’s Portfolio Problem

In the formulation of the classical Merton’s portfolio problem, one
need to determine the running cost h and the terminal cost g .

This can be done by applying the concept of utility functions, which
characterize the investors preferences and is the function of wealth or
consumption.

Utility function express how satisfied the investor is with a certain
outcome of the investment.

In this setup, running cost h is the utility of consumption, which
represents the case where the investor makes a living from the
investment and consumes money from the bank account.

If there is no consumption, then we only need to maximize the
expected utility of the final wealth g .
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Classical Merton’s Portfolio Problem

It is assumed that utility functions are strictly increasing, strictly
concave and continuous. (Tikosi [6])

Examples: g(x) = log(x) and g(x) = xγ where 0 < γ < 1.

Consider the case where g(x) = log(x) and there is no consumption
by the investor.

→ Recall the controlled SDE:

dXs = (a1us + r(1− us))Xsds + a2usXsdWs , for s > t

Xt = x

Then, our goal is to solve the following equation and obtain the optimal
control function:

V (t, x) = max
u

E[log(X (T ))|Xt = x ]
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Classical Merton’s Portfolio Problem

Applying the Itô formula, integration, and taking expected value yields,

max
u

E
[

log(X (T ))
∣∣Xt = x

]
= log(x)+max

u
E
[ ∫ T

t
a1us+r(1−us)−1

2
a2

2u
2
s ds
]

However, the function a1us + r(1− us)− 1
2a

2
2u

2
s is strictly concave:

∂

∂u

(
a1us + r(1− us)− 1

2
a2

2u
2
s

)
= a1 − r − a2

2u

∂2

∂u2

(
a1us + r(1− us)− 1

2
a2

2u
2
s

)
= −a2

2 < 0

Therefore, we obtain û = a1−r
a2

2
. Thus, the optimal control is defined as,

u∗ =


0 if û < 0
û if û ∈ [0, 1]
1 if û > 1

Sassan Mokhtar Risk-Averse Optimal Control May 15, 2020 46 / 62



Risk-Averse Merton’s Portfolio Problem

Classical Merton’s Portfolio Problem

Finally, the corresponding value function is:

V (t, x) =


log(x) + r(T − t) if û < 0

log(x) +
(
r + (a1−r)2

2a2
2

)
(T − t) if û ∈ [0, 1]

log(x) +
(
a1 − 1

2a
2
2

)
(T − t) if û > 1

Notice that the simplicity of this solution is due to the fact that the SDE
has an exponential solution. Thus, taking the logarithm leads us to the
simple equation.

→ The next step is to compute the associated formula for the
g(x) = log(x) in the risk-averse formulation.
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Risk-Averse Merton’s Portfolio Problem

Derivation by applying the HJB equation: Recall the drift and
diffusion term in the controlled SDE were given by:

b(s,X ) =
(
a1us + r(1− us)

)
Xs , σ(s,X ) = a2usXs

Also, recall the risk-averse Hamiltonian:

H(t, x ,Vx ,Vxx) = sup
u∈[0,1]

{
bVx +

1

2
σ2Vxx −

√
2βs |σVx |

}
Plug the values for drift and diffusion terms in Hamiltonian:

H(t, x ,Vx ,Vxx) =

sup
u∈[0,1]

{(
a1us + r(1− us)

)
xVx +

1

2
a2

2u
2
s x

2Vxx −
√

2βs |a2usxVx |
}

Under the assumption that Vx ≥ 0, and Vxx ≤ 0, the function inside the
suprimum is concave, and its first derivative with respect to the control u
is:
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Risk-Averse Merton’s Portfolio Problem

a1xVx − rxVx + a2
2usx

2Vxx −
√

2βsa2xVx

Thus, the optimal solution is given by:

ûs =
r − a1 − a2

√
2βs

a2
2

V 2
x

xVxx
(8)

Then, the optimal control is given by,

u∗t =


0 if ût < 0
ût if ût ∈ [0, 1]
1 if ût > 1

The optimal yields the HJB equation:

Vt +H(t, x ,Vx ,Vxx) = 0

V (T , x) = log(x)

where,
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H(t, x ,Vx ,Vxx) =


rxVx if ût < 0

rxVx − 1
2

(
a1−r−a2

√
2βt
)2

a2
2

V 2
x

Vxx
if ût ∈ [0, 1]

a1xVx +
a2

2x
2Vxx

2 if ût > 1

The next step is to find the value function. For the case where ût ∈ [0, 1],
we apply the following ansatz:
Ansatz: V (t, x) = log(x) + f (t)
Therefore,

Vt = f ′(t), Vx =
1

x
, Vxx = − 1

x2

By plugging these values in the HJB equation:

f ′(t) =

(
a1 − r − a2

√
2βt
)2

2a2
2

+ r
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Risk-Averse Merton’s Portfolio Problem

Then, the solution to this ODE is given by,

f (t) =

∫ T

t
r +

(
a1 − r − a2

√
2βs
)2

2a2
2

ds

Consequently,

V (t, x) = log(x) +

∫ T

t
r +

(
a1 − r − a2

√
2βs
)2

2a2
2

ds

Similarly, one can apply the same ansatz and obtain the corresponding
value function for other two cases:

V (t, x) =


log(x) + r(T − t) if ût < 0

log(x) +
∫ T
t r +

(
a1−r−a2

√
2βs
)2

2a2
2

ds if ût ∈ [0, 1]

log(x) +
(
a1 −

a2
2

2

)
(T − t) if ût > 1
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Finally, plugging V (t, x) into the equation (8), leads to the following

control ût = a1−r−a2
√

2βt
a2

2
for û ∈ [0, 1]. Then, the optimal control is given

by,

u∗t =


0 if ût < 0
ût if ût ∈ [0, 1]
1 if ût > 1

which matches the result of the first derivation.
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General Risk-Neutral Merton’s Portfolio Problem

→ The next step is to consider the more general case where the running
cost h is not zero. In this case, we assume that the investor consumes
wealth at non-negative rate c(t) at time t ≥ 0.
Therefore the controlled SDE becomes,

dXs = [(a1us + r(1− us))Xs − cs ]ds + a2usXsdWs , for s > t

Xt = x

Also, assume that the running utility of consumption is given by h(c) = cp

p

and the utility derived from terminal wealth is of the form g(x) = xp

p ,
where 0 < p < 1. Then, the Hamiltonian is,

H(t, x ,Vx ,Vxx) =

sup
u∈[0,1],c

{
[
(
a1us + r(1− us)

)
x − cs ]Vx +

1

2
a2

2u
2
s x

2Vxx +
cps
p

}
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Therefore,

H(t, x ,Vx ,Vxx) =

sup
u∈[0,1]

{(
a1us + r(1− us)

)
xVx +

1

2
a2

2u
2
s x

2Vxx

}
+ sup

c

{cps
p
− csVx

}
Thus, the optimal controls are given by,

ûs =
r − a1

a2
2

V 2
x

xVxx
, c∗s = V

1
p−1
x

Define,

u∗t =


0 if ût < 0
ût if ût ∈ [0, 1]
1 if ût > 1

Plug these values in HJB equation (for û ∈ [0, 1] case)
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Vt + rxVx −
1

2

(a1 − r)2

a2
2

V 2
x

Vxx
+

1− p

p
V

p
p−1
x = 0

V (T , x) =
xp

p

The objective is to find the value function that satisfies the HJB equation.
For doing this, use the following ansatz,

V (t, x) = f (t)1−p x
p

p

Then,

Vt = (1−p)f (t)−pf ′(t)
xp

p
, Vx = f (t)1−pxp−1, Vxx = (p−1)f (t)1−pxp−2
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By plugging into HJB equation,(
1− p

p
f (t)−pf ′(t) + rf (t)1−p − 1

2(p − 1)

(a1 − r)2

a2
2

f (t)1−p

+
1− p

p
f (t)−p

)
xp = 0

f (T )1−p = 1

Mathematical simplification yields the following ODE,

f ′(t) +
1

1− p

(
rp − p

2(p − 1)

(a1 − r)2

a2
2

)
f (t) + 1 = 0

f (T ) = 1

Let k = 1
1−p

(
− rp − p

2(1−p)
(a1−r)2

a2
2

)
. Then, the ODE becomes,

Sassan Mokhtar Risk-Averse Optimal Control May 15, 2020 56 / 62



Risk-Averse Merton’s Portfolio Problem
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f ′(t)− kf (t) + 1 = 0

f (T ) = 1

And the solution to this ODE is given by,

f (t) =
1− exp{−k(T − t)}

k
+ exp{−k(T − t)}

The final step is to compute the optimal controls using this choice of value
function V ,

û =
a2 − r

a2
2(1− p)

, c∗(t) =
X (t)

f (t)

→ Therefore, the investor should trade continuously in order to keep a
constant fraction u∗ of wealth in the stocks and consume at the rate
proportional to total wealth; however, the proportion is time-dependent.
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General Risk-Averse Merton’s Portfolio Problem

→ Now, the objective is to extend the general Merton’s portfolio problem
to the risk-averse case.
Recall that,

b(s,X ) =
(
a1us + r(1− us)

)
Xs − cs σ(s,X ) = a2usXs

Then, the Hamiltonian is given by,

H(t, x ,Vx ,Vxx) =

sup
u∈[0,1],c

{(
a1us+r(1−us)

)
xVx−csVx+

1

2
a2

2u
2
s x

2Vxx−
√

2βs |a2usxVx |+
cps
p

}
Thus,
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H(t, x ,Vx ,Vxx) =

sup
u∈[0,1]

{(
a1us + r(1− us)

)
xVx +

1

2
a2

2u
2
s x

2Vxx −
√

2βs |a2usxVx |
}

+ sup
c

{
+

cps
p
− csVx

}
Then, again under the assumption that VX ≥ 0 and Vxx ≤ 0 inside the
first suprimum is concave. Then, the optimal solutions are given by,

ûs =
r − a1 − a2

√
2βs

a2
2

V 2
x

Vxx
, c∗s = V

1
p−1
x

Plugging these values in HJB equation yields,
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General Risk-Averse Merton’s Portfolio Problem

Vt + rxVx −
1

2

(a1 − r − a2
√

2βt)
2

a2
2

V 2
x

Vxx
+

1− p

p
V

p
p−1
x = 0

V (T , x) =
xp

p

The next step is to obtain the solution of the HJB,
Ansatz: V (t, x) = f (t)1−p xp

p
Plug into HJB and some mathematical simplification yields the following
ODE:

f ′(t)− k(t)f (t) + 1 = 0

f (T ) = 1

where k(t) = 1
1−p

(
− rp − p

2(1−p)
(a1−r−a2

√
2βt)2

a2
2

)
.
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General Risk-Averse Merton’s Portfolio Problem

Then, the solution to this ODE is given by,

f (t) =
1−

∫ T
t exp{−

∫ T
t k(s)ds}ds

exp{−
∫ T
t k(s)ds}

Remark

This derivation is for the general case, where the risk level β is function of
time. If β is constant, then the value function is similar to the risk-neutral
case, of course with new k .

The final step is to compute the optimal controls using this choice of value
function V ,

û(t) =
a1 − r − a2

√
2βt

a2
2(1− p)

, c∗(t) =
X (t)

f (t)
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