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Introduction

Rare Events

The objective is to estimate,

α(γ,N) = P
( N∑

i=1

Xi ≤ γ
)

where X1,X2, ...,XN are i.i.d. non-negative random variables with
probability density function fX (.) and cumulative distribution function
FX (.).

If N is large and γ is small → the regime is called rare event.

Rare events: Infrequent events that might have widespread effect on
the system and even destabilize it.

Real world applications:

In Control Systems: Probability of collision of two aircrafts.
In Insurance: Probability of ruin a company.
...
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Introduction

Crude Monte Carlo

We have,

α(γ,N) = P
( N∑

i=1

Xi ≤ γ
)

= E
[
1(

∑N
i=1 Xi≤γ)

]
Thus, the crude Monte Carlo estimator is given by,

α̂ =
1

M

M∑
j=1

1
(j)

(
∑N

i=1 Xi≤γ)

where X are i.i.d. and X ∼ fX .

→ To compare different estimators, we use the squared coefficient of
variation (SCV), which is defined to be the ratio between the variance of
the estimator and its squared mean.
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Introduction

Crude Monte Carlo

Since the variance of crude Monte Carlo estimator is,

Var(1(
∑N

i=1 Xi≤γ)) = E
[(
1(

∑N
i=1 Xi≤γ)

)2]
− E

[
1(

∑N
i=1 Xi≤γ)

]2

= E
[
1(

∑N
i=1 Xi≤γ)

]
− E

[
1(

∑N
i=1 Xi≤γ)

]2
= α(γ,N)− α2(γ,N)

The squared coefficient of variation is given by,

SCVcrude =
α(γ,N)− α2(γ,N)

α2(γ,N)
≈ 1

α(γ,N)
(1)

The estimator is called to have a bounded relative error, if it holds
lim supα(γ,N)→0 SCV <∞.
Since, SCVcrude →∞ as α→ 0, the crude Monte Carlo estimator does
not have a bounded relative error.
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Introduction

Crude Monte Carlo

For example, if α is of order 10−6, then according to CLT, the relative

error is estimated as c
√
SCVcrude√

M
.

Then, to meet 5% relative error we need M ≈ 1.962.SCVcrude
(0.05)2 ≈ 109 samples.

→ We need to apply some variance reduction techniques.
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Different Importance Sampling Approaches Approach Based on Sample Rejection

Approach Based on Sample Rejection

This approach, which is the most simple Importance Sampling estimator,
is based on sample rejection.
Let A =

⋂N
i=1{Xi ≤ γ}, then according to the law of total probability,

P
( N∑
i=1

Xi ≤ γ
)

= P
( N∑

i=1

Xi ≤ γ|A
)
.P(A) + P

( N∑
i=1

Xi ≤ γ|Ac
)
.P(Ac)

Since the second term in the right hand side is zero and the fact that,

P(A) = P(X1 ≤ γ,X2 ≤ γ, ...,XN ≤ γ) =
(
FX (γ)

)N
We obtain,

α(γ,N) = P
( N∑

i=1

Xi ≤ γ
)

= P
( N∑

i=1

ωi ≤ 1
)(

FX (γ)
)N

(2)

where ωi = {Xi
γ |

Xi
γ ≤ 1}
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Different Importance Sampling Approaches Approach Based on Sample Rejection

Approach Based on Sample Rejection

Then, the estimator is obtained by estimating the term P
(∑N

i=1 ωi ≤ 1
)

by crude Monte Carlo method, where it is not rare event anymore, as long
as N is not large.
→ Note that this estimator can be interpreted as applying importance
sampling with biased PDF being the truncation of the underlying PDF
over the hypercube [0, γ]N .

The next step is to compute the SCV for the approach based on sample
rejection.
First, notice that,

α(γ,N) = E
[(
FX (γ)

)N
1(

∑N
i=1 ωi≤1)

]
Let Zγ =

(
FX (γ)

)N
1(

∑N
i=1 ωi≤1).
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Different Importance Sampling Approaches Approach Based on Sample Rejection

Approach Based on Sample Rejection

Then,

Var(Zγ) = E[(Zγ)2]− E[Zγ ]2 =
(
FX (γ)

)2N α(γ,N)(
FX (γ)

)N − α(γ,N)2

Thus,

SCVSR =

(
FX (γ)

)N
α(γ,N)

− 1

→ Notice that for fixed N, this estimator achieves the bounded relative
error with respect to the parameter γ for distributions that satisfy
FX (x) ∼ cxd (where d > 0) as x → 0. This is due to the fact that

α(γ,N) = P
( N∑

i=1

Xi ≤ γ
)
≥

N∏
i=1

P
(
Xi ≤

γ

N

)
=
(
FX (

γ

N
)
)N
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Different Importance Sampling Approaches Approach Based on Sample Rejection

Approach Based on Sample Rejection

Then, for the given CDF, it satisfies,

SCVSR ≤

(
FX (γ)

)N
(
FX (γ/N)

)N − 1 = O(1)

→ Question: What happens when N is large?
Assume that Xi , i = 1, ...,N are uniform between [0, 1], then it can easily
proven by induction that,

P
( N∑

i=1

ωi ≤ 1
)

=
1

N!

Therefore, the estimator has a SCV approximately equal to N! which is
worse than any exponential increase.
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Different Importance Sampling Approaches Approach Based on Sample Rejection

Approach Based on Sample Rejection

In general, by applying the Chernoff inequality and using the fact that
X1, ...,XN are i.i.d., we obtain the following upper bound,

P
( N∑

i=1

ωi ≤ 1
)
≤ min

η≥0
exp

(
η + N log(E[e−ηω])

)
This shows that the estimate based on sample rejection does not perform
well when N is large.
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Different Importance Sampling Approaches Approach Based on Maximum Entropy

Approach Based on Maximum Entropy

The idea of this approach is to propose an importance sampling estimator

to estimate P
(∑N

i=1 ωi ≤ 1
)

for large values of N.

By doing this, the rarity parameter N is incorporated in variance reduction
procedure, as well.
Therefore, the goal is to find the density f ∗ω that solves,

max
f
−
∫ 1

0
log
(
f (x)

)
f (x)dx

s.t.

∫ 1

0
xf (x)dx =

1

N

f (x) ≥ 0, 0 ≤ x ≤ 1.

when N is large the solution to this problem is exponential with rate
λ(N) ≈ N.
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Different Importance Sampling Approaches Approach Based on Maximum Entropy

Approach Based on Maximum Entropy

Therefore, the marginal density of each ωi is,

f ∗ω (x) =
Ne−Nx

1− e−N
, 0 ≤ x ≤ 1.

Then, by applying this change of measure to the previous approach we can
write,

P
( N∑

i=1

ωi ≤ 1
)

= Ef ∗ω

[
1(

∑N
i=1 ωi≤1)

N∏
i=1

(1− e−N)fω(ωi )

Ne−Nωi

]
The next step is to obtain the squared coefficient of variation for this
maximum entropy estimator.
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Different Importance Sampling Approaches Approach Based on Maximum Entropy

Approach Based on Maximum Entropy

Notice that,

α(γ,N) = Ef ∗ω

[
1(

∑N
i=1 ωi≤1)

N∏
i=1

(1− e−N)fω(ωi )

Ne−Nωi

](
FX (γ)

)N
Let Zγ =

(
FX (γ)

)N
1(

∑N
i=1 ωi≤1)

∏N
i=1

(1−e−N)fω(ωi )

Ne−Nωi
. Then,

Var(Zγ) = Ef ∗ω

[
1(

∑N
i=1 ωi≤1)

N∏
i=1

(1− e−N)2fω(ωi )
2

N2e−2Nωi

](
FX (γ)

)2N − α2(γ,N)

And,

SCVME =

Ef ∗ω

[
1(

∑N
i=1 ωi≤1)

∏N
i=1

(1−e−N)2fω(ωi )
2

N2e−2Nωi

](
FX (γ)

)2N

α2(γ,N)
− 1
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Different Importance Sampling Approaches Approach Based on Maximum Entropy

Approach Based on Maximum Entropy

The main limitation of the maximum entropy approach is that the
underlying density fω(.) is not involved in the optimization problem.

In other words, applying the truncated exponential f ∗ω (.) as a biased
density for all possible choices of fω(.) could lead to even higher variance
than the crude Monte Carlo method.

As a result, another approach has to be developed.
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Different Importance Sampling Approaches Approach Based on Exponential twisting

Approach Based on Exponential twisting

In this approach the biased densities are obtained by minimizing the
Kullback-Leibler divergence of underlying and the biased densities.

Let h(x) =
∏N

i=1 fX (xi ) be the joint PDF of (X1, ...,XN)T , where
x = (x1, ..., xN)T . Then, the objective is to obtain the new joint
density f ∗ by solving the following optimization problem,

inf
f ∗≥0

∫
f ∗(x) log

( f ∗(x)

h(x)

)
dx

s.t.

∫
f ∗(x)dx = 1

Ef ∗

[ N∑
i=1

Xi

]
= γ

f ∗(x) ≥ 0, x ≥ 0

(3)
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Different Importance Sampling Approaches Approach Based on Exponential twisting

Approach Based on Exponential twisting

By applying the method of Lagrange multiplier, we obtain the following
solution (Ridder and Rubinstein 2007),

f ∗(x) =
h(x) exp(θ

∑N
i=1 xi )

c(θ)
(4)

where c(θ) = Eh[exp(θ
∑N

i=1 xi )] is the normalizing factor and θ is the
Lagrange multiplier that solves,

Eh[
∑N

i=1 Xi exp(θ
∑N

i=1 xi )]

Eh[exp(θ
∑N

i=1 xi )]
= γ

Thus, the optimal density is given by exponentially twisting of each
univariate density fX (.),

f ∗X (x) =
fX (x)eθx

M(θ)
, x ≥ 0

where M(θ) = EfX [eθx ] is the moment generating function. Then, θ

satisfies M′(θ)
M(θ) = γ

N .
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Different Importance Sampling Approaches Approach Based on Exponential twisting

Approach Based on Exponential twisting

While the change of measure based on exponential twisting is known to be
optimal and expected to outperform the previous approaches, it has two
main limitations:

1 M(θ) should be known in closed form expression. And this is not the
case always. For example, the moment generating function of
log-normal distribution is not known in general.

2 Sampling under the new measure f ∗X is not straight forward and might
be expensive.

→ Next, we are going to propose the alternative change of measure that
lead to the same performance as the exponential twisting, but without its
limitations.

This can be done by distinguishing 3 different cases.
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Different Importance Sampling Approaches Approach Based on Exponential twisting

Approach Based on Exponential twisting

(i) fX (x) = O(1) as x → 0 :

Since the exponential twisting change of measure is given by,

f ∗X (x) ∝ fX (x).eθx , x ≥ 0

with θ → −∞ as α(γ,N)→ 0, we propose the following change of
measure,

f̃X (x) =
eθx

M̃(θ)
, x ≥ 0

with M̃(θ) = −1
θ
. Recall that θ should satisfies M̃′(θ)

M̃(θ)
= γ

N
. Thus,

θ = −N
γ

.

Consequently, the proposed change of measure is,

f̃X (x) =
N

γ
e−

N
γ
x , x ≥ 0
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Different Importance Sampling Approaches Approach Based on Exponential twisting

Approach Based on Exponential twisting

(ii) fX (x) = xdg(x) with g(x) = O(1), as x → 0 and d > −1:

The proposed change of measure for this case is,

f̃X (x) =
xdeθx

M̃(θ)
, x ≥ 0

By comparing with the Gamma distribution,

Gamma(k , β) =
1

βkΓ(k)
xk−1e−

x
β

we obtain that the new measure corresponds to the Gamma
distribution with shape parameter d + 1 and scale parameter −1

θ
.

Also, it is clear that the normalizing factor is M̃(θ) = Γ(d+1)
(−θ)d+1 . Then,

since M̃′(θ)

M̃(θ)
= γ

N
, we obtain,

θ = −N

γ
(d + 1)
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Different Importance Sampling Approaches Approach Based on Exponential twisting

Approach Based on Exponential twisting

(iii) Distributions that does not approaches to 0 polynomially:

This case is the most difficult one and it is required to consider in a
case by case basis.
→ Take for example sum of i.i.d. standard log-normal random
variables. (Asmussen et al. 2016) proposed the following procedure
to apply the exponential twisting technique to this case,

1 They propose an unbiased estimator of the moment generating
function M(θ)

2 Then approximate the value of θ that satisfies M̃′(θ)

M̃(θ)
= γ

N

3 Finally, they use acceptance-rejection to sample from the biased
density (which might be expensive when N is large)

Sassan Mokhtar Rare-event Simulations June 8, 2020 23 / 34



Different Importance Sampling Approaches Approach Based on Exponential twisting

Approach Based on Exponential twisting

First, let A =
⋂N

i=1{Xi >
δγ
N } and rewrite the α(γ,N),

P
( N∑

i=1

Xi ≤ γ
)
≈
(

1− FX (
δγ

N
)
)N

P
( N∑

i=1

Xi ≤ γ|A
)

where δ ∈ (0, 1) is a fixed value that control the bias.
While there is a closed form expression for the first term in the RHS, it is
needed to estimate the second term.
Recall that Xi are standard log-normal random variables. Thus, the density
of Xi |Xi >

δγ
N is given by,

f̄X (x) =
1

x
√

2π

exp(− (log x)2

2 )

P(Xi >
δγ
N )

, x ≥ δγ

N

where P(Xi >
δγ
N ) is the normalizing factor.
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Different Importance Sampling Approaches Approach Based on Exponential twisting

Approach Based on Exponential twisting

Therefore,

P
( N∑

i=1

Xi ≤ γ|A
)

= Pf̄X

( N∑
i=1

Xi ≤ γ
)

Recall that the exponential twisting change of measure is,

f̄ ∗X (x) ∝ f̄X (x)eθx , x ≥ δγ

N

Next, we apply the Taylor expansion to approximate f̄X (.) in the interval
[δγ/N, γ],

f̄X (x) = f̄X

(δγ
N

)
+
(
x − δγ

N

)
f̄ ′X

(δγ
N

)
+ o(x − δγ

N
)

Combining both equations lead to the following change of measure (with
notation f̄X = f̄X (δγ/N) and f̄ ′X = f̄ ′X (δγ/N)),

f̃X (x) =
f̄X e

θx + (x − δγ
N )f̄ ′X e

θx

M̃X (θ)
, x ≥ δγ

N
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Approach Based on Exponential twisting

Then,

M̃(θ) = −exp(θδγ/N)

θ
f̄X +

exp(θδγ/N)

θ2
f̄ ′X

Now, it is time to go through the step 2 and estimate θ. Again, recall that

θ satisfies M̃′(θ)

M̃(θ)
= γ

N . Thus,

θ = −
f̄X − cf̄ ′X +

√
(f̄X − cf̄ ′X )2 + 8f̄X f̄

′
X c

2cf̄X

where c = γ
N (1− δ)

Finally, sampling from f̃X (.) can be done by writing,

f̃X (x) = − f̄X exp(θδγ/N)

M̃X (θ)θ
f̃1(x) +

f̄ ′X exp(θδγ/N)

M̃X (θ)θ2
f̃2(x)

where f̃1(x) = − θ exp(θx)
exp(θδγ/N) and f̃2(x) = − θ2(x−δγ/N) exp(θx)

exp(θδγ/N) are valid

densities for x > δγ/N.
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Numerical Results

Numerical Results

Consider the problem

α(γ,N) = P
( N∑

i=1

Xi ≤ γ
)

where X are i.i.d. and drawn from the Weibull distribution.
In order to apply the optimal exponential twisting, one requires to

compute θ from M′(θ)
M(θ) = γ

N , where M(θ) =
∑∞

n=0
θnλn

n! Γ(1 + n
k )

which makes the task of computing the θ extremely difficult (if not
impossible).
Since the density of Weibull distribution is given by
fX (x) = k

β ( x
β )k−1 exp(−( x

β )k) i.e. fX (x) = xk−1g(x), we use the change
of measure,

f̃X (x) =
xk−1 exp(θx)

M̃(θ)
, x ≥ 0

with M̃(θ) = Γ(k)
(−θ)k

and θ = −N
γ k.
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Numerical Results

Figure: SCV as a function of N where Xi are i.i.d. Exponential RVs with rate
λ = 1 and γ = 0.01
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Numerical Results

Numerical Results

Figure: SCV as a function of N where Xi are i.i.d. Weibull RVs with rate
λ = 1, k = 1.5 and γ = 0.5
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Numerical Results

Numerical Results

Figure: SCV as a function of N where Xi are i.i.d. Weibull RVs with rate
λ = 1, k = 0.5 and γ = 0.01
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Conclusion

Conclusion

We discuss 3 different approaches based on importance sampling to
estimate rare-event probabilities.

The approach based on minimizing the Kullback-Leibler divergence
outperform the others.

We develop the alternative change of measure that yields the same
performance as the optimal change of measure, but without its
computational limitations.

Future directions:

How to choose δ?

How to control the bias?

What is the effect of δ on variance?
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