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Abstract

This thesis concerns the analysis and computation of the Black-Scholes equation with local
volatility. Since its derivation in 1973, the Black-Scholes equation has played a key role
in the field of mathematical finance. While it is observed that the Black-Scholes equation
has some limitations for capturing the real world features of option prices, it still acts as a
benchmark in option pricing, and significant efforts have been made to analyze and improve
this equation.

In addition to discussing the fundamental concepts in option pricing and deriving the
Black-Scholes equation, we follow the book ”Computational methods for option pricing” by
Achdou and Pironneau to numerically approximate the Black-Scholes equation with local
volatility by applying a Galerkin finite element method. This method consists of applying
the Crank-Nicolson scheme to discretize the problem in time and obtain the semi-discrete
problem. Then, the fully discrete problem is obtained by discretizing the problem with
respect to the price variable and applying the Lagrange finite element method. In the end,
the obtained linear system is solved by the conjugate gradient method.

Next, a posteriori error analysis is derived. The method consists of developing two families
of error estimators, where the first family is global in price variable and local in time variable,
and the second family is local with respect to both price and time variables. Then, these
error estimators are applied to propose an algorithm to refine the mesh adaptively.

Finally, after a brief discussion of the shortcomings of Black-Scholes equation, we follow
the paper ”Computation of local volatilities from regularized Dupire equation” by Hanke and
Rösler to calibrate the local volatility function from observed option prices in the market. In
this method, which can be considered as a remedy for limitations of Black-Scholes equation,
the observed data are smoothened by cubic splines. Then, the Dupire equation is applied to
evaluate the local volatility function. However, the obtained system is underdetermined and
ill-posed, and thus the first order Tikhonov regularization is used to regularize the problem.

We examine this method with the real market data of Russell 2000 index on 1st of August
2018, where the resulting volatility surface appears to be qualitatively correct.
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1 Introduction

In 1973, the first modern option exchange, called ”CBOE”, was established in Chicago.
Since then, options have been widely used by traders on markets and exchanges. While
dealing with the problem of option pricing dates back to the work of Bachelier in 1900, the
first successful attempt to derive analytical models for option valuation was the celebrated
Black-Scholes equation in 1973. Black-Scholes equation is a second order parabolic partial
differential equation which is considered as a benchmark in mathematical finance for pricing
options. Although in the original Black-Scholes model the interest rate and volatility are
assumed to be constant, in this thesis we consider the extended version of the Black-Scholes
equation with the interest rate being a function of time and the volatility being a function of
time and price of the underlying asset. This model is typically called ”Black-Scholes equation
with local volatility”.

In spite of the fact that there is an analytic solution for the original Black-Scholes equation,
analytical approaches are limited to constant volatilities and may not be applied to more
complex options and real market data. Therefore, the numerical approximation of Black-
Scholes equation needs to be considered. Among different classes of numerical methods that
are applied to the Black-Scholes equation, finite difference and finite element methods are
shown to have better performance. Because, beside the fact that these methods are fast
and accurate, they can be used for pricing different types of options. However, one of the
advantages of finite element methods are that they are supported by strong mathematical
theory. Moreover, finite element methods allow a posteriori error analysis and performing
local mesh refinement. Hence, we follow Achdou and Pironneau [AP05] and develop a finite
element method to approximate the Black-Scholes equation with local volatility. This method
consists of discretizing the problem in two steps. First, we discretize the problem in time by
applying the Crank-Nicolson scheme to obtain the semi-discrete problem. Next, we apply
Lagrange finite elements to discretize the problem with respect to the spatial variable and
obtain the fully discrete problem. Finally, the Conjugate gradient method is used to solve
the obtained linear system.

In the case of a posteriori error analysis, we consider the method proposed by Bergam,
Bernardi, and Mghazli [BBM05]. The method consists of developing two families of residual-
type error estimators, where the first family is global with respect to spatial variable and
local in time, and the second family is local in both space and time. Then, we demonstrate
the algorithm that uses these error indicators to perform adaptive mesh refinement for the
Black-Scholes equation with local volatility.

On the other hand, based on empirical studies, there is a difference between the real
value of the option in the market and the value that the Black-Scholes model suggests. In
particular, after the US market crash in October 1987, volatility smile has appeared in the
market. Volatility smile is occurred when we plot the extracted implied volatility for the
same underlying asset price and the same maturity but with different strikes. According to
the original Black-Scholes equation, the obtained line should be straight. Nevertheless, in
practice, this process leads to a curve that is higher at the ends and lower in the center.



1 Introduction

There are two important approaches to tackle the shortcomings of the Black-Scholes equa-
tion in capturing the real world features of option prices. The first one consists of extending
the model by relaxing some restrictive assumptions on the original Black-Scholes equation
(in fact this is why we consider the Black-Scholes equation with local volatility in this thesis).
The second approach deals with proposing new models. In addition, while other parameters
of Black-Scholes equation can be determined by information in the market easily, evaluating
the volatility is a complicated task. Thus, a significant amount of work has been done by
different authors to assign an appropriate value to the volatility. According to [SS91], we
can categorize these efforts into two groups, deterministic volatility models and stochastic
volatility models. Deterministic volatility models assume that the volatility can be deter-
mined using variables that are observed in the market. While in stochastic volatility models,
it is assumed that the volatility itself is stochastic. The advantage of deterministic volatility
models lies in the fact that these models can take into account some empirical regularities,
for instance, time-varying volatility. Also, deterministic volatility models give us the oppor-
tunity to calibrate the volatility surface and fit the smile. However, in terms of practical use
of deterministic models, better performance in pricing could be obtained at the expenses of
overfitting, which limited the practical application of these models for pricing exotic options
[BJ01]. On the other hand, stochastic volatility models lead to producing new parameters
which make the task of evaluating the volatility more complex.

In this thesis, we follow the method which is proposed by Hanke and Rösler [HR05], to
compensate for the limitation of the Black-Scholes equation. This method belongs to the
class of deterministic volatility models and consists of calibrating the local volatility function
from observed option prices in the market. Typically, in option markets, the information
for few maturity dates and a discrete sample of strikes on each maturity is given. In this
method, the observed data are smoothened by cubic splines. In the next step, the numerical
differentiation should be done, and for doing this, the Dupire equation is applied. The Dupire
equation determines the option value in specific price and time as a function of strike and
maturity. Therefore, the advantage of applying the Dupire equation is that, unlike the Black-
Scholes equation, by solving the equation just once, we obtain the option value for each pair
of strikes and maturities. However, due to the nature of this problem the obtained system is
underdetermined and ill-posed. Thus, we apply the first order Tikhonov regularization, to
regularize the system. We apply this approach to the real data of Russell 2000 index, which
can be considered as the small capitalization stock market index, on the 1st of August 2018.
The obtained volatility surface appears to be qualitatively correct.

The remainder of this thesis is organized as follows: we start by reviewing the related
literature in chapter 2. Chapter 3 consists of two parts. We first demonstrate the basic
financial concepts related to options, and in the second part of the chapter, we derive the
Black-Scholes equation. The mathematical analysis of the Black-Scholes equation with local
volatility is considered in chapter 4, in which we derive the variational formulation of this
equation. In the first part of chapter 5, we obtain the analytic solution to the original
Black-Scholes equation. While in the second part, we apply the finite element method to
approximate the Black-Scholes equation with local volatility numerically. In the end of this
chapter, the obtained linear system is solved by applying the conjugate gradient method.
In chapter 6, we develop a posteriori error analysis to the Black-Scholes equation with local
volatility and perform a strategy to refine the mesh adaptively. Finally, in chapter 7, we first,
discuss the shortcomings of the Black-Scholes equation. Then, calibration of local volatility
function is done, and the method is tested for the real world data.
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2 Literature Review

In this chapter, we review some literature on the numerical analysis of Black-Scholes equa-
tion. In the first section, we regard four different classes of numerical schemes for option
valuation. Then, based on the fact that we are going to apply the finite element method for
pricing options, we consider literature about adaptive mesh refinement of the Black-Scholes
equation. Finally, we illustrate the alternative methods for calibration of local volatility
surface in the last section of this chapter.

2.1 Numerical Schemes in Option Pricing

There is an explicit formula for the Black-Scholes equation of European options which is going
to be discussed in chapter 4, however, it is limited to constant interest rate and volatility, and
can not be applied to general market data and more complex options. Therefore, numerical
schemes are widely used in option pricing. Four different classes of these numerical schemes
are discussed in this section.

2.1.1 Monte Carlo Simulation

Monte Carlo method is, in fact, a numerical scheme for approximating the expected value
of a random variable. On the other hand, the problem of option pricing can be stated as
expectations. Therefore, it is possible to apply Monte Carlo methods for option pricing
[Kwo08]. In 1977, Boyle was the first one who suggested a Monte Carlo simulation method
for solving the problem of option valuation [Boy77]. After that, this method, which can
be considered as an alternative to the Black-Scholes equation, has been applied widely for
derivative pricing problems. Take for example Glasserman [Gla13], who discusses in detail
the application of Monte Carlo methods for pricing different types of options. Moreover,
the application of the Monte Carlo scheme in pricing European-style options is regarded
by Seydel [Sey06], and Higham [DH96]. Meanwhile, according to [WDH93], the drawback
of Monte Carlo schemes is that they are relatively slow and inflexible, compare to other
numerical methods in option pricing.

2.1.2 Lattice Tree Methods

Another alternative numerical model for the problem of option valuation is Lattice tree
model. As it is illustrated by Wilmott, Dewynne, and Howison [WDH93], the main idea
behind the Lattice methods is to build a lattice of the possible values of the asset at maturity
and probability of occurring these values, based on the current value of the underlying asset.
One of the simplest Lattice methods is the binomial model, which assumes a two jump process
for the asset value over each time step. In 1979, Cox, Ross and Rubinstein [CRR+79], applied
the binomial method for solving the option valuation problem. Since then, various versions
of this model with different assumptions have developed by different authors. For instance,
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pricing of European-style options by the binomial model is considered in [WHHD95] and
[Cor01].

Furthermore, trinomial schemes are the extension of binomial models, in which one as-
sumes that there is a three jump process for the price of the asset at each time step. Trinomial
model for option pricing was developed by Boyle in 1986 [Boy86]. Since then, similar to the
binomial scheme, many variants of this scheme has been proposed by different authors. Take
for example the method which was developed by Kamrad and Ritchken in 1991 [KR91]. As
it is mentioned by Kwok [Kwo08], when the number of time steps is high, both trinomial and
binomial schemes satisfy the Black-Scholes equation to the first order accuracy. Nevertheless,
the disadvantage of these models is their low speed.

2.1.3 Finite Difference Methods

The finite difference method has been numerously used by different authors to derive the nu-
merical approximation of partial differential equations. Similarly, applying different schemes
of finite difference method to the Black-Scholes equation has become very popular. Take for
example Achdou and Pironneau [AP05], derive the fully implicit Euler scheme to the Black-
Scholes equation, and obtain that this scheme is first-order accurate in time and second-order
accurate in price variable. They also test the second-order accurate Crank-Nicolson scheme
and observe that in some cases the order of accuracy of this scheme is less than 2.

More precise analysis of this phenomenon is done by Duffy [Duf18], which analyze the
fully implicit scheme and observe that while the method is stable and do not produce false
oscillations, it is only first order accurate. Moreover, by deriving the Crank-Nicolson scheme
to the Black-Scholes equation he obtains that this scheme is stable and second order accu-
rate. However, he observes that when the convective term is large or in the regions with
low regularity in the payoff function (near the strike price K for European options), false
oscillations are produced. Then, the Keller box scheme, which is based on the work by Keller
[Kel71], is introduced. This scheme consists of reducing the second order equation to a sys-
tem of first order equations, then approximate the first derivatives by averaging in a box.
This scheme cures the shortcomings of Crank-Nicolson, and is second-order accurate, un-
conditionally stable and produce no oscillation. Furthermore, regarding the work in [Duf80],
the exponentially fitted scheme is suggested by Duffy, which consists of exponentially fitted
scheme in the price direction and fully implicit discretization in the time direction. This
scheme is proved to be uniformly stable and oscillation-free. Also, according to [Duf13], the
exponentially fitted scheme has a first-order accuracy in time and price variables, however,
by applying Richardson extrapolation one can produce a second order scheme.

2.1.4 Finite Element Methods

Based on the fact that many problems in finance are one-dimensional in space, finite element
seems to be unnecessarily complex. However, due to the fact that the finite element methods
support local refinement and are flexible for more complex cases, they are widely used in
finance [AP07].

As it is mentioned by Topper [Top05b], option pricing problems are usually of the form,

ut = L[u]− f

where L[u] is a second order differential operator. A typical approach for discretizing this
type of problem is to discretize the spatial variable with finite elements, and time variable

4



2.2 A Posteriori Error Analysis of Black-Scholes Equation

with finite differences. Nowadays, almost all finite element methods belong to the Method of
Weighted Residual (MWR), which (in static one variable problems) consists of introducing
the residual R = L[ũ] − f , and minimizing it. This can be done by enforcing the weighted
integrals of the residual to be zero, i.e.∫

ω
RWjdx = 0 ∀j

where Wj are weights. Then, in order to take into account the boundary conditions and also
to determine the weighting functions, there are two popular choices, Galerkin method and
Collocation method. In the case of the Galerkin method, shape function φ is regarded as the
weighting function. One of the advantages of this method is that it produces the matrices
with nice structure. In Collocation method we put Wi(x) = δ(x − xi), where δ is a Dirac
function. So that, ∫

ω
R(x, ũ)δ(x− xi)

!
= R(xi; ũ) ∀i.

Both of these approaches are considered by Topper [Top05a], for the valuation of European
options. First of all, the Black-Scholes equation is transformed by a change of variable,
then the Galerkin finite element method is derived by applying equi-distance four element
model discretization and linear interpolation. Then, implementation of the Collocation finite
element for European put option is done. According to his data, he concludes that this finite
element approach is of first order (by applying the implicit Euler scheme) and second order
(by applying the Crank-Nicolson scheme) in time, and fourth order in space.

On the other hand, in this thesis, we are going to regard the work of Achdou and Pironneau
[AP05]. Their approach consists of applying Galerkin finite element method to the Black-
Scholes equation with local volatility. The discretization is done in two steps. First, by
applying the Crank-Nicolson scheme in time, the time-semidiscrete problem is derived. Then,
in order to obtain a fully discrete problem, the Lagrange finite element is applied to discretize
the domain with respect to the spatial variable.

Furthermore, discontinuous Galerkin method has been used by several authors for option
pricing. Take for example Larsson [Lar13], which apply the method in the [PvP07], to semi-
discretize the spatial variable by a second order not equidistant finite difference scheme.
This adaptive finite difference scheme leads to the system of ordinary partial differential
equations. Then, the discontinuous Galerkin method of degree r is applied to this system
of equations. However, it is costly to solve the obtained linear system of the size (r + 1)N ,
where N is the number of grid points. Thus, the method in [SS00] is applied, to decouple the
system, into (r + 1) linear systems of size N , by choosing normalized Legendre polynomials
as temporal shape functions. In the end, it is concluded that this approach can obtain the
convergence rate of 2r + 1.

2.2 A Posteriori Error Analysis of Black-Scholes Equation

For more than thirty years, a significant amount of work has done regarding a posteriori
error analysis for the finite element discretization of partial differential equations [BBM05].
Due to the fact that the Black-Scholes equation is a parabolic partial differential equation,
there are numerous works that take into account a posteriori error analysis of this equation.

For instance, the paper by Goll, Rannacher and Wollner [GRW15], in which the Dual
Weighted Residual method is applied to derive a posteriori error estimator. In the case of

5
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time semi-discretization, they develop a damped Crank-Nicolson scheme. Authors argue
that since irregular initial data appears naturally in the Black-Scholes model, such damping
is needed to eliminate oscillations in the solution. The discretization in price variable is done
by conforming finite element. Then, a posteriori error analysis is proposed by applying the
Dual Weighted Residual method, which deals with solving the dual problem. According to
the authors, possible irregularity of initial data makes damping necessary for dual equation
too. Therefore, they develop a consistent discretization, which is the discretization that the
dual to the discrete problem is also discrete of the dual problem. Then they follow the ”goal-
oriented” approach (discussed in [EEHJ96], [BR96] and [BR01]), in order to perform the error
estimation. In the end, they propose the adaptive finite algorithm based on this method.
According to their experiments, the convergence order of the damped Crank-Nicolson scheme
is 2, while the undamped version of Crank-Nicolson has the convergence order of 1.

Another work which takes into account the adaptive finite element method for black-
Scholes equation is the paper by Ern, Villeneuve, and Zanette [EVZ04]. In the case of
numerical computation of Black-Scholes equation, they apply the non-conforming Galerkin
method, which consists of discrete functions that are continuous in price variable and discon-
tinuous in time variable. Next, a posteriori error analysis is derived, in which finite element
residual and solution of dual problem control functional of the error. Then, an adaptive
mesh refinement algorithm is derived by localizing a posteriori error estimator onto the cells
of the mesh. Based on their practical experiments, while in theory, the convergence order
of a posteriori error bound is 2, in practice the order of convergence fluctuates between 1.6
and 2.1. It is also worth mentioning that similar method is used by Foufas and Larsson in
[FL08], for computation of Asian options.

Moreover, we can mention the paper by Jackson and Süli [JS97], that consider the gener-
alized Black-Scholes equation and transform the equation by a change of variables. Then, in
order to obtain a sharp a posteriori error bound, they propose piecewise Hermite cubic ele-
ments. Therefore, the discontinuous Galerkin method is used. In the next step, by adapting
the dual problem, a residual-based a posteriori error bound is proved. Finally, regarding the
bound, an adaptive strategy is developed to solve the obtained problem.

However, we follow the method which is demonstrated by Achdou and Pironneau [AP05],
in order to derive a posteriori error analysis for the Black-Scholes equation. This method
consists of two families of residual-type error indicators, where the first one is global with
respect to price variable and local with respect to time and the second family is local with
respect to both time and price.

2.3 Local Volatility Model

According to [GNC14], one important remedy for shortcomings of the Black-Scholes model
in real life applications is to calibrate the local volatility function, which consists of finding
the local volatilities such that the theoretical option prices match the option values in the
market. Therefore, this approach leads to an optimization problem. Nevertheless, there are
some difficulties with this problem. First of all, we would like to find the volatility in each
grid points, thus this problem is large scale. Also, the Black-Scholes equation (and Dupire
equation) is a nonlinear operator in σ. Moreover, there are only a few numbers of available
data in real option markets, and this is much less than the number of parameters. Finally,
small changes in option price bring about significant changes in the volatility surface. Hence,
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the calibration problem is a nonlinear, large scale, underdetermined and ill-posed inverse
problem.

In order to overcome the large-scale nonlinear nature of the calibration problem, authors
usually apply the gradient-based optimization methods. One important class of these meth-
ods consists of solving the adjoint partial differential equation of Dupire or Black-Scholes
equation (e.g. [LO+97] and [BI97]). Another option is to apply the automatic differentiation.
In the case of the underdetermined and ill-posed nature of the calibration problem, authors
usually regularize the problem by the first order Tikhonov regularization (e.g. [BJ99]). It
also should be noted that the Dupire equation determine the option value as a function of
strike (K) and maturity (T ), in specific price and time. Therefore, it is computationally
much cheaper to consider the Dupire equation, instead of the Black-Scholes equation, in
calibration problems. Because by doing this, we do not need to solve a partial differential
equation for each pair of strike and maturity separately.

Among authors that take into account the calibration problem, we can mention Achdou
and Pironneau [AP05], that use the Dupire equation, and regularized problem with first order
Tikhonov regularization. Then, by applying the adjoint state operator, solve the problem
and derive the local volatility surface. They apply their method to the S&P 500 index and
plot the obtained volatility surface.

Moreover, Coleman, Li, and Verma [CLV01] apply a spline functional approach, which
consists of producing the local volatility function by a spline whose values are obtained
by solving an optimization problem. They do not use the Dupire equation, therefore the
computational cost increase. However, the authors argue that this approach leads to a more
stable method. In the end, their method is tested with real option data of the S&P 500
index. Similarly, the paper by Jackson, Süli, and Howison [JSH98] propose another method
for calibrating the volatility surface without using the Dupire equation. They consider the
instantaneous volatility as a spline, where the weights are obtained by solving the regularized
optimization problem numerically (i.e. solve the partial differential equation with finite
element methods). Finally, they construct the volatility for the straddle option prices on the
FTSE-100.

Furthermore, Turinici [Tur09], develops a method that use the first order Tikhonov regu-
larization to regularize the calibration problem. Then, he proposes an approach which can
be regarded as a special case of the sequential quadratic programming and consists of Gauss-
Newton style approximation of the Hessian. Also, he derives the volatility surface based on
the market data of call option on S&P 500 and FOREX. We can also mention the paper
by Geng, Navon, and Chen [GNC14], which apply the automatic differentiation to solve the
inverse problem. However, the novelty of their approach is to use the second order Tikhonov
regularization, which leads to smoother volatility surface. They verify their approach by
testing both synthetic and real market data.

However, we follow the more straightforward method which is presented by Hanke and
Rösler [HR05] and consists of regularizing the problem by applying the first order Tikhonov
regularization. Then, data are smoothened by deriving cubic splines, and according to Dupire
equation, the numerical differentiation is done.
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3 Option Pricing

This chapter is an introduction to the Black-Scholes equation. In the first section of the
chapter, basic financial concepts related to options are discussed. The second section deals
with deriving Black-Scholes equation.

3.1 Option Basics

As illustrated in [Jia05], financial derivatives are instruments whose value depends on the
price of an underlying asset, where the asset can be Bonds, Stocks, and commodities etc.
Options are one of the most important financial derivatives, which frequently and in signifi-
cant portion trade in financial markets. Before deriving Black-Scholes equation, it is helpful
to discuss in detail basic concepts of options.

3.1.1 Brief History of Options

Whereas option markets were quite unidentified before 1973, by establishing the first modern
options exchange ”Chicago Bond Options Exchange (CBOE)”, the number of options as well
as their trading volume, increased fundamentally each year .

3.1.2 What Is an Option?

A financial option is a contract in which the writer (i.e. the seller) gives the right, but not the
obligation to the holder (i.e. the purchaser), to buy or sell a certain amount of underlying
asset, at the specified price (called ”Strike”) and on the specified date (called ”Maturity”).
In other words, if the option holder decides to exercise the option, the option writer has the
obligation to execute the transaction. A call option gives the holder the right to buy the
underlying asset while put option provides option holder the right to sell the underlying
asset.

Moreover, European options and American options, are two basic types of options.
While the latter can exercise by the holder at any time until maturity, the former can only
exercise at maturity. During the thesis, we consider the analysis of European options in
depth.

3.1.3 Moneyness

Another crucial concept in option pricing is moneyness, which indicates the relationship
between the market price of the underlying asset and strike. ”In the money” options are
those that underlying asset price is higher than strike, whereas, in the ”out of money”
options, the strike is greater. If these values are the same, then the option is called ”at
the money”. Meanwhile, it is worth noting that given definitions are for Call options, the
description is reverse for Put options. [Mar01]
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3.1.4 The Value of an Option

The fact of the matter is that, if the option is ”in the money”, then the option holder can
exercise the option and obtain some profit. However, for ”out of the money” situation, the
option holder can simply use his or her right and refuse to exercise money and lose nothing.
Thus, option trading is ”no-lose situation” for option holder and ”no-win situation” for
option writer. The question arises here is that why someone should write an option under
this circumstance. The answer is that the option writer receives some money in return for
writing the option, and this amount is called Option Value (or Option Premium).

As it is mentioned in [Chr96], there is a moment in which determining the value of an
option is relatively easy, and it is at expiration (maturity). Based on the fact that if the
price of the underlying asset (denoted by S) is greater than the strike (denoted by K) for a
call option, then the option holder can obtain S−K by exercising it. On the other hand, in
the case of ”out of money”, a rational option holder will not use his or her right to exercise
the option, and the option will expire worthlessly. Consequently, a fair value of a call option
in maturity is given by max(0, S−K). By the same reasoning, put option value in maturity
is max(0,K − S). Figure 3.1 shows a graph of payoff at the expiry of European call (the
left-hand side) and put (the right-hand side) options, where strike is equal to $50.

Figure 3.1: Payoffs in European call (the left-hand side) and European put (the right-hand
side) options

Furthermore, the payoff is different from profit. If one would like to calculate the profit
of the option holder, the premium should subtract from payoff function. Profit diagram of
European call and put option is shown in figure 3.2, where strike is $50 and the option value
is equal to $10.

It is also important to consider the fact that in order to value an option, there are some
factors which should take into account. There are 6 factors that affect the value of options.
These factors are consists of the strike K, maturity T , the current market price of the
underlying asset S (also known as spot price), interest rate r, future volatility of the price
of the underlying asset σ and dividends q for underlying asset. To put it in another way,
option value is a function of these 6 factors. [Mar01]

One of the main objective in option pricing is to determine an appropriate value of options.
One way to tackle this problem is deriving an equation that gives the analytic solution. The
first and maybe the most important effort to obtain such analytic solution is the Black-Scholes
model, which was proposed by Fischer Black and Myron Scholes in 1973. Introducing this
equation is the subject of the next section.

10
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Figure 3.2: Profit from buying a European call (the left-hand side) and European put (the
right-hand side) options

3.2 Black-Scholes Equation

In this section, we follow the procedure in [HB16], in order to derive the Black-Scholes
equation and obtain a fair value for European options.

3.2.1 Stochastic Model

Deriving the stochastic model for capturing the price of a stock is the goal of this subsection.
For doing this, illustrating some definitions and concepts are necessary.

Definition 3.2.1. Stochastic process: A stochastic process is a family of random variables
{X(t) , t ∈ T} with parameter space T and state space, which illustrates the probabilistic
evolution of the value of a random variable chronologically. [Bei06]

If T is a finite or countably infinite set, then the stochastic process is in discrete time, oth-
erwise, it is categorized as continuous time. Similarly, stochastic processes can be classified
as a continuous variable and discrete variable, where in the latter the state space is finite or
countably infinite (i.e. the underlying variable can get finite values in a certain range) and
in the former the state space in infinite.[Bei06]
It is also worth noting that, while stock prices are processes in discrete time, they will be
modeled as a continuous time continuous variable stochastic processes. Because it is a proper
model for deriving Black-Scholes equation. Also, continuous time processes are easier to han-
dle analytically. [FHH04]

Definition 3.2.2. Markov process: A Markov process is a particular kind of stochastic
process in which satisfies two conditions. First, only the present value of a variable is relevant
to predict the future. Secondly, the past value of the variable and the way the current value
is evolved from the past is irrelevant.

Before deriving the next definition, it is necessary to describe two concepts.
A drift rate of a stochastic process is the change of mean in unit time and variance rate is
a variance per unit time.

11
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Definition 3.2.3. Wiener process: A Wiener process or Brownian process dz is a partic-
ular type of Markov process which describes the evolution of normally distributed variable
with a drift rate of zero and variance rate equal to 1.

To put it in another way, if the value of the random variable at t = 0 is x0, then at the
time t̄ it is normally distributed with mean x0 and standard deviation

√
t̄.

Definition 3.2.4. generalized Wiener process: A generalized Wiener process illustrates
the evolution of a variable with the normal distribution, where drift rate and variance rate
per unit are a and b2 respectively (a and b are constant). Consequently, for a variable x,
generalized Wiener process can be written algebraically as

dx = a dt+ b dz. (3.1)

Intuitively, the adt term express the drift rate of the variable x, whereas, the term bdz is
considered as the noise of the path followed by x.

Definition 3.2.5. Itô process: If a and b in the definition of generalized Wiener process
be functions of the value of the underlying variable x, then the process is called Itô process.
Thus, algebraically

dx = a(x, t) dt+ b(x, t) dz. (3.2)

Now, based on above definitions and concepts, it is possible to derive a stochastic model
for stock prices.

One option is to assume that stock price follows the generalized Wiener process. However,
based on the fact that expected percentage return is independent of the stock’s price (i.e.
if investor looking for 14 % annual expected return, it is not important whether the stock’s
price is $10 or $50), the constant expected drift rate is an inappropriate assumption. Instead,
one should assume that the expected return is constant.

In other words, suppose that S is a stock price at time t, then one may consider the
expected drift rate in S as µ S, where a constant parameter µ is the expected rate of return
on the stock. This implies that, regarding the short period of time (∆t), then the expected
growth in S is µ S ∆t.

Moreover, due to the fact that investor’s uncertainty of the percentage return is indepen-
dent of the stock price (i.e. whether the price is $ 10 or $ 50 the risk of percentage return for
the investor is the same), it makes sense to assume that in the short interval of time, ∆t, the
stock price should be proportional to the standard deviation of the change. Which results in
the following wildly used stochastic model for describing the stock price in the real world

dS = µ S dt + σ S dz (3.3)

or

dS/S = µ dt + σ dz. (3.4)

This model is called geometric Brownian motion, in which µ is expected rate of return of
the stock and σ is the stock price volatility. It is also worth noting that in the risk neutral
world (which illustrates the situation where the investors are risk-neutral), µ is equal to the
risk-free interest rate r.

12



3.2 Black-Scholes Equation

3.2.2 Itô’s Lemma

In order to derive a celebrated Black-Scholes partial differential equation, one needs another
ingredient, called Itô’s lemma [Itō51]. In fact, the role of this lemma for functions of the
random variable is similar to the role of Taylor expansion for functions of deterministic
variables. It relates a slight change in function of random variable x to the slight change in
the random variable x itself [WDH93]. In other words, it provides us the way to take into
account the behavior of functions of stochastic variables.

Regarding the previous definitions, if dz is a Wiener process, also a and b are functions of
x and t. In addition, suppose that the drift rate and variance rate of variable x is a and b2

respectively, and x follows the Itô process

dx = a(x, t) dt+ b(x, t) dz. (3.5)

Then Itô’s lemma proves that the function G follows the process

dG =
(∂G
∂x

a+
∂G

∂t
+

1

2

∂2G

∂x2
b2
)
dt+

∂G

∂x
b dz (3.6)

where G is the function of x and t. and Wiener process dz is the same as the process in 3.5.
Therefore, G follows the Itô’s process either, where the drift rate is

∂G

∂x
a+

∂G

∂t
+

1

2

∂2G

∂x2
b2

and the variance rate is

(
∂G

∂x
)2b2

By combining the result of Itô’s lemma and the obtained stochastic model of previous
subsection, one can deduce that the process which follows by the function G of S and t is

dG =
(∂G
∂x

µ S +
∂G

∂t
+

1

2

∂2G

∂x2
σ2 S2

)
dt+

∂G

∂x
σ S dz. (3.7)

By comparing 3.3 and 3.7, we realize the underlying source of uncertainty dz for both G and
S.

3.2.3 Black-Scholes Model

Before deriving the Black-Scholes model, it is beneficial to describe very briefly the history
behind the asset pricing.

History

As it is mentioned in [Din13], Louis Bachelier’s is known as the founder of mathematical
finance. In his Ph.D. thesis ”The Theory of speculation”[Bac00], he used random walks, in
order to show that stock prices follow a Brownian motion. Moreover, Bashelier introduced a
method for pricing of the certain short-term options. In the mid-60s, Paul Samuelson[Sam65]
observed that so as to obtain a more accurate illustration of the movement of shared prices,
it is better to use geometric Brownian motion instead of simple Brownian motion. Samuelson
was awarded the Nobel prize in Economic Sciences in 1970 for his contributions in economic
theory.

13
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The next major effort was done by other Noble prize winners Harry Markowitz and William
Sharpe in portfolio theory. They replace the problem identifying the best stock for invest-
ment, by the problem of calculating the risk of the whole portfolio of stocks and bonds.

Although asset pricing methods developed significantly since Bachelier’s thesis in 1900, ob-
taining an explicit formula for option pricing was missing. This revolutionary task achieved
by the work of two financial economists Fischer Black and Myron Scholes, with important
contributions of Robert C. Merton in 1973. Fischer Black obtained Ph.D. in applied mathe-
matics from Harvard University. Besides that, he was working for the management consult-
ing company ”Arthur D. Little” as a financial consultant. Myron Scholes is an American-
Canadian financial economist who defended his doctoral thesis at the Chicago University on
the role of arbitrage in the securities market. During his first year in MIT as an assistant
professor, he met Fischer Black there. On the other hand, Robert C. Merton enrolled at
MIT for a graduate study in economics. Due to the fact that he was interested in dynamic
portfolio selection at that time, he started to study Itô calculus, as an appropriate mathe-
matics to model hedging strategy. While Merton was interviewed for a position at MIT, he
met Scholes. Then they three start collaborating on their mutual interest.

On 1973, Black and Scholes published their famous paper [BS73], proposed two derivations
of Black-Scholes formula. The first approach is based on the Capital asset pricing model, and
the second one is based on Merton’s idea in hedging. Merton also published an important
paper [Mer73] in 1973. Scholes and Merton awarded a Noble prize in Economic Sciences in
1997, while Black did not receive an honor due to early death in 1995.

In this section, we derive the Black-Scholes equation based on the Merton’s hedging ap-
proach.

Deriving the Black-Scholes differential equation

In order to begin derivation of the Black-Scholes equation, one needs to define an important
concept in option pricing.

Definition 3.2.6. Delta-hedging: For a given option V , trading ∆ shares of the underlying
asset S in the opposite direction, such that the portfolio

Π = −V + ∆S

is risk-free, is called delta-hedging.[Jia05]

Assume that the payoff of an option at maturity is denoted by V (S, T ), then so as to find
the value of the option in different times before maturity, use earlier mentioned Itô’s lemma
for two variables S and t. Thus,

dV =
(
µ S

∂V

∂S
+
∂V

∂t
+

1

2
σ2 S2 ∂

2V

∂S2

)
dt+ σ S

∂V

∂S
dz. (3.8)

Regarding the delta-hedge portfolio with ∆ = ∂V
∂S , then the value of this portfolio is

Π = −V +
∂V

∂S
S

By considering the total profit or loss from the change in the value of the portfolio over
the time period [t, t+ ∆t], one obtains

∆Π = −∆V +
∂V

∂S
∆S. (3.9)
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Now, replace differential with ∆ in 3.3 (in fact we consider the discretization of the stochas-
tic model)

∆S = µ S ∆t + σ S ∆z. (3.10)

Following the same procedure for 3.8, leads to

∆V =
(
µ S

∂V

∂S
+
∂V

∂t
+

1

2
σ2 S2 ∂

2V

∂S2

)
∆t+ σ S

∂V

∂S
∆z. (3.11)

In order to eliminate the uncertain part (∆z), plug 3.10 and 3.11 into 3.9, to obtain

∆Π = −
(
µ S

∂V

∂S
+
∂V

∂t
+

1

2
σ2 S2 ∂

2V

∂S2

)
∆t− σ S ∂V

∂S
∆z +

∂V

∂S

(
µ S ∆t + σ S ∆z

)
And by performing introductory mathematical operations

∆Π = −
(∂V
∂t

+
1

2
σ2 S2 ∂

2V

∂S2

)
∆t. (3.12)

To continue the derivation of Black-Scholes differential equation, it is necessary to define one
of the most important concepts in the theory of option pricing.

Definition 3.2.7. Arbitrage opportunity: An Arbitrage opportunity is an investment
opportunity in which earning risk-free money is guaranteed.[Ste11]

In order to eliminate the arbitrage opportunity, the rate of return of the portfolio should be
equal to the risk-free rate of return (which is interest rate r) over the time period [t, t+ ∆t].
Therefore,

∆Π = rΠ∆t. (3.13)

Plug obtained values of Π and ∆Π into 3.13, results in(
− ∂V

∂t
− 1

2
σ2 S2 ∂

2V

∂S2

)
∆t = r

(
− V +

∂V

∂S
S
)

∆t. (3.14)

Introductory mathematical simplifications lead to the famous Black-Scholes partial differ-
ential equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0. (3.15)

The next step is to determine the initial and boundary conditions for this second order
parabolic partial differential equation. For doing this, one needs to differentiate between call
options and put options.

Based on the discussion in [WDH93] for call options, as it is mentioned in the previous
section, the final value (at maturity) of an option is given by C(S, T ) = max(0, S −K). If
S = 0, then the payoff will be zero too, hence the call option is worthless and C(0, t) = 0.
When S → ∞, the magnitude of the exercise price become less important and the value of
the option become equal to the value of the asset

C(S, t) ∼ S as S →∞

In the case of put options, the value of an option at maturity is P (S, T ) = max(0,K−S).
Whenever S is zero, the value of the option is equal to the strike K, however, one should
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calculate the present value of strike. Thus, under the assumption that the interest rate r is
constant, one obtains

P (0, t) = Ke−r(T−t)

Nevertheless, if S →∞, then the put option is worthless, and

P (S, t) = 0 as S →∞

In this chapter, we discussed the derivation of the Black-Scholes equation based on two
fundamental assumption. First, the underlying asset price follows the geometrical Brownian
motion and the second assumption is that the market is arbitrage-free[Jia05]. The exact
definition of Black-Scholes equation with local volatility and its mathematical analysis is
given in the next chapter.
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4 Mathematical Analysis of Black-Scholes
Equation with Local Volatility

In this chapter, we follow the discussion in [AP05], in order to provide the required mathe-
matical tools for analysis of the Black-Scholes equation with local volatility. The fact of the
matter is that the results of this chapter are a basis for deriving the numerical solution of
the Black-Scholes equation with local volatility in the next chapter. Meanwhile, we try to
present the most fundamental aspects of mathematical analysis of the Black-Scholes equation
with local volatility and do not include detailed mathematical discussion in this chapter.

The first part of this chapter deals with presenting the strong solution to the Black-Scholes
equation with local volatility. Then, we will derive the weak formulation of the equation,
which as will be discussed later, plays an important role in finite element methods. Finally,
we are going to express the theorem which proves that there is a unique solution for this
weak formulation.

4.1 Strong Solution

In order to derive a mathematical analysis of the Black-Scholes equation with local volatility,
it is more straightforward to consider the European put option. Moreover, based on the fact
that we are interested in the forward parabolic equations, the time variable t is replaced
by the time to maturity T − t. As a consequence, in this section, we regard the forward
parabolic differential equation for S > 0 and t ∈ (0, T ],

∂

∂t
P (S, t)− 1

2
σ2(S, t)S2 ∂2

∂S2
P (S, t)− r(t)S ∂

∂S
P (S, t) + r(t)P (S, t) = 0 (4.1)

with Cauchy data

P (S, 0) = P0(S), S ∈ R+ (4.2)

where P0 is the payoff function defined by P0(S) = max(0,K − S).

This equation is called a Cauchy problem, and as it is proved in [Fri08], if

• the function σ(S, t) is non-negative and bounded on R+ × [0, T ],

• the function t 7→ r(t) be bounded and Lipschitz continuous,

• the function (S, t) 7→ Sσ(S, t) is Lipschitz continuous on R+ × [0, T ],

• the Cauchy data P0 satisfies 0 ≤ P0(S) ≤ c(1 + S), where c is a given constant.
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Then there exist a unique function P ∈ C0(R+ × [0, T ]), C1-regular and C2-regular in
R+ × (0, T ] with respect to t and S respectively, that is a solution to 4.1, 4.2. Also, for a
given constant c′, it satisfies 0 ≤ P (S, t) ≤ c′(1 + S).

The function P is called the strong solution of the Cauchy problem. Nevertheless, in order
to derive many numerical solutions for partial differential equations including finite elements
method, one requires the concept of a weak formulation, which will be discussed in remaining
of this chapter.

4.2 Weak Formulation

Before following the analysis of Black-Scholes partial differential equation, it is required to
introduce some function spaces.

The Hilbert space of square integrable functions on R+ is denoted by L2(R+), with the

norm ||v||L2(R+)= (
∫
R+ v(x)2dx)

1/2
and the inner product (v, w)L2(R+) =

∫
R+ v(x)w(x)dx.

We define the function space V by

V =
{
v ∈ L2(R+) : x

∂v

∂x
∈ L2(R+)

}
(4.3)

where the derivative is regarded as distributions on L2(R+). The corresponding seminorm
is defined by |v|V = ||x ∂v∂x ||L2(R+), and the inner product is (v, w)V = (v, w) + (x ∂v∂x , x

∂w
∂x ).

Another ingredient in the derivation of weak formulation for the Black-Scholes equation
is Poincaré’s inequality.

Lemma 4.2.1. (Poincaré’s inequality) If v ∈ V , then

||v||L2(R+)≤ 2||x∂v
∂x
||L2(R+) (4.4)

Proof. The proof of this Lemma is given in [AP05].

Observe that based on Poincaré’s inequality

• If |v|V = 0, then

0 = |v|V = ||x∂v
∂x
||L2(R+)≥

1

2
||v||L2(R+)

thus ||v||L2(R+)= 0, and therefore v = 0.

Consequently, the seminorn defined for function space V is, in fact, a norm.

Before deriving the weak solution, it is also necessary to define the dual space of V (de-
noted by V ′).

||w||V ′= sup
v∈V \{0}

(w, v)

|v|V
. (4.5)
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After the brief discussion of function spaces, the next step is to derive the bilinear form. And
for doing that, one needs to multiply the 4.1 by a smooth function φ on R+, and obtain,

∂

∂t
P (S, t)φ(S)− 1

2
σ2(S, t)S2 ∂2

∂S2
P (S, t)φ(S)− r(t)S ∂

∂S
P (S, t)φ(S) + r(t)P (S, t)φ(S) = 0

Then, integrate the obtained equation in S on R+,

∂

∂t

∫
R+

P (S, t)φ(S)dS −
∫
R+

1

2
σ2(S, t)S2 ∂2

∂S2
P (S, t)φ(S)dS

−
∫
R+

r(t)S
∂

∂S
P (S, t)φ(S)dS + r(t)

∫
R+

P (S, t)φ(S)dS = 0.

Next step is to apply the integration by parts to the second expression of above equation,

∂

∂t

∫
R+

P (S, t)φ(S)dS +

∫
R+

S2σ2(S, t)

2

∂

∂S
P (S, t)

∂

∂S
φ(S, t)dS

+

∫
R+

(
Sσ2(S, t) + S2σ(S, t)

∂σ

∂S
(S, t)

) ∂

∂S
P (S, t)φ(S, t)dS

−
∫
R+

r(t)S
∂

∂S
P (S, t)φ(S)dS + r(t)

∫
R+

P (S, t)φ(S)dS = 0.

Simple mathematical simplification results in,

∂

∂t

∫
R+

P (S, t)φ(S)dS +

∫
R+

S2σ2(S, t)

2

∂

∂S
P (S, t)

∂

∂S
φ(S, t)dS

+

∫
R+

(
− r(t) + σ2(S, t) + Sσ(S, t)

∂σ

∂S
(S, t)

)
S
∂

∂S
P (S, t)φ(S, t)dS

+ r(t)

∫
R+

P (S, t)φ(S)dS = 0. (4.6)

Finally, we introduce the bilinear form of the Black-Scholes partial differential equation
with local volatility as,

at(v, w) =

∫
R+

S2σ2(S, t)

2

∂v

∂S

∂w

∂S
dS

+

∫
R+

(
− r(t) + σ2(S, t) + Sσ(S, t)

∂σ

∂S
(S, t)

)
S
∂v

∂S
wdS + r(t)

∫
R+

vwdS. (4.7)

Using this bilinear form, one can define the weak formulation of 4.1, 4.2.
If C0([0, T ];L2(R+)) be the space of continuous functions with values in L2(R+), and L2(0, T ;V )
be the space of square integrable functions with values in V , then the weak formulation is
defined as,

Definition 4.2.1. Weak formulation: Find P ∈ C0([0, T ];L2(R+)) ∩ L2(0, T ;V ), such
that ∂P

∂t ∈ L
2(0, T ;V ′), satisfying

P |t=0= P0 in R+ and for a.e. t ∈ (0, T ) (4.8)

∀v ∈ V, (
∂P

∂t
(t), v) + at(P (t), v) = 0. (4.9)
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4 Mathematical Analysis of Black-Scholes Equation with Local Volatility

In order to continue the mathematical analysis of Black-Scholes equation with local volatil-
ity and to prove that there is a unique solution for the weak formulation, one requires to
show that the bilinear form is continuous and to prove G̊arding’s inequality. And for doing
this, making some assumptions on coefficients σ and r is necessary.

Assumption 1. The interest rate r is nonnegative and continuous and σ is continuous and
sufficiently regular, such that

1. There exist nonnegative constants, σ and σ̄, such that for all

t ∈ [0, T ] and all S ∈ R+,

0 ≤ σ ≤ σ(S, t) ≤ σ̄ (4.10)

2. There exist a positive constant Cσ, such that for all t ∈ [0, T ] and all S ∈ R+,∣∣∣S ∂σ
∂S

(S, t)
∣∣∣ ≤ Cσ. (4.11)

Regarding the ingredients of this section, including the definitions, assumptions and bilin-
ear form 4.7, we can derive the theorem which proves that there is a unique solution for the
weak formulation, and this is the objective of the next section.

4.3 Final Result

The goal of this section is to apply the theory of Lions and Magenes [LM12], described in
[AP05], in order to provide the ingredients, which are required to prove that there is a unique
solution for the weak formulation. And for doing this, first of all, one needs to prove the
continuity and weak ellipticity of the bilinear form 4.7, then states the final result.

Lemma 4.3.1. Considering the assumption 1, the bilinear form 4.7 is continuous on V . In
other words, there is a constant µ ≥ 0, such that for all v, w ∈ V ,

|at(v, w)|≤ µ|v|V |w|V . (4.12)

Proof. The bilinear form 4.7 consists of three expressions. The idea is to consider each ex-
pression separately, and obtain an upper bound for each one, then use the triangle inequality
to obtain an upper bound for the whole bilinear form.

Therefore, using assumption 1, the definition of the function space V , and Cauchy-Schwarz
inequality for the first expression of the bilinear form, results in∣∣∣ ∫

R+

S2σ2(S, t)

2

∂v

∂S

∂w

∂S
dS
∣∣∣ =

∣∣∣ ∫
R+

σ2(S, t)

2
S
∂v

∂S
S
∂w

∂S
dS
∣∣∣ ≤ σ̄2

2
|v|V |w|V .

In the case of the second expression, applying the assumption 1, besides calling R =
maxt∈[0,T ] r(t), lead to∫

R+

(
− r(t) + σ2(S, t) + Sσ(S, t)

∂σ

∂S
(S, t)

)
S
∂v

∂S
wdS ≤

(
R+ σ̄2 + Cσσ̄

)
|v|V ||w||L2(R+)
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4.3 Final Result

Now, applying Poincaré’s inequality 4.4, yields(
R+ σ̄2 + Cσσ̄

)
|v|V ||w||L2(R+)≤ 2

(
R+ σ̄2 + Cσσ̄

)
|v|V |w|V .

Similarly, the upper bound for the third expression is obtained,∣∣∣r(t) ∫
R+

vwdS
∣∣∣ ≤ R||v||L2(R+)||w||L2(R+)≤ 4R|v|V |w|V .

It only remains to determine an appropriate constant µ, based on above upper bounds.
Choosing µ = 5

2 σ̄
2 + 2Cσσ̄ + 6R, completes the proof.

The next Lemma is G̊arding’s inequality, which proves the weak ellipticity of the bilinear
form. It is worth noting that unlike elliptic partial differential equations that the uniqueness
of the solution proved by the Lax-Milgram theorem or Riesz theorem, and thus continuity
and full ellipticity of bilinear form is required, in the case of parabolic equations (including
the theory of Lions and Magenes [LM12]), the unique solution of the weak formulation is
typically proved by continuity and weak ellipticity.

Lemma 4.3.2. (G̊arding’s inequality) Regarding assumption 1, there exist a constant
λ ≥ 0, such that for all v ∈ V ,

at(v, v) ≥ σ2

4
|v|2V−λ||v||2L2(R+). (4.13)

Proof. We follow the approach similar to the proof of Lemma 4.3.1. As a consequence, the
bound for each expression of the bilinear form 4.7 is obtained separately.

Applying the assumption 1, and the definition of the function space V to the first expression
leads to ∣∣∣ ∫

R+

S2σ2(S, t)

2
(
∂v

∂S
)2dS

∣∣∣ ≥ σ2

2
|v|2V .

By applying the similar reasoning to the proof of Lemma 4.3.1, for the second expression,
one obtains∫

R+

(
− r(t) + σ2(S, t) + Sσ(S, t)

∂σ

∂S
(S, t)

)
S
∂v

∂S
vdS ≤

(
R+ σ̄2 + Cσσ̄

)
|v|V ||v||L2(R+).

Then, using the square of a difference factorization ((a−b)2 = a2 +b2−2ab), with a = σ
2 |v|V

and b = R+σ̄2+Cσσ̄
σ ||v||L2(R+), yields(

R+ σ̄2 + Cσσ̄
)
|v|V ||v||L2(R+)≤

σ2

4
|v|V +λ||v||2L2(R+)

where λ =
(R+σ̄2+Cσσ̄)

2

σ2 .
In the case of the third expression, one obtains,∣∣∣r(t) ∫

R+

v2dS
∣∣∣ ≤ 4R|v|2V .

Then, elementary mathematical simplification leads to the desired result, and this terminates
the proof.
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4 Mathematical Analysis of Black-Scholes Equation with Local Volatility

Theorem 4.3.3. Considering the assumption 1, if P0 ∈ L2(R+), then there is a unique
solution for the weak formulation 4.2.1, and the following estimate for all t , 0 < t < T holds,

e−2λt||P (t)||2L2(R+)+
1

2
σ2

∫ t

0
e−2λτ |P (τ)|2V dτ ≤ ||P0||L2(R+). (4.14)

Proof. As we mentioned earlier, the derivation of this section is according to the work by
Lions and Magenes [LM12]. The proof of the first part of this theorem, which is based on
an abstract theory of deriving energy estimates for the approximate solutions, is given there.
Moreover, Evans and Lawrence [Eva10] proposed another approach to prove the unique
solution of the weak formulation using the energy estimates.

In the case of the estimate, first of all take v = P (t)e−2λt, then plug this value into the
weak formulation 4.9. This yields,

(
∂P

∂t
, P (t)e−2λt) + at(P (t), P (t)e−2λt) = 0. (4.15)

Now, apply G̊arding’s inequality 4.13, to obtain,

e−2λtat(P (t), P (t)) ≥ e−2λt
(σ2

4
|P (t)|2V−λ||P (t)||2L2(R+)

)
. (4.16)

Then, combine 4.15 and 4.16, integrate in time between 0 and t, use integration by parts
and finally some mathematical simplification, result in

e−2λt||P (t)||2L2(R+)+
1

2
σ2

∫ t

0
e−2λτ |P (τ)|2V dτ ≤ ||P0||L2(R+). (4.17)

It should be mentioned that due to the fact that the payoff function of the call option is
not in L2(R+), the above theorem does not apply to European call options. Therefore, in
order to obtain the price for call options, one needs to apply the put-call parity (which will
be discussed in chapter 5) or work with different Sobolev space.

By proving the unique solution of the weak formulation and obtaining a regularity estimate
of Black-Scholes equation with local volatility for the European put option, this chapter
terminates. In the next chapter, in addition to the derivation of the Black-Scholes formula,
we apply finite element methods and derive a numerical method for approximating the Black-
Scholes equation with local volatility for the European put option 4.1.
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5 Solution to the Black-Scholes equation

The goal of this chapter is to present the solution to the Black-Scholes partial differential
equation. In the case of the original Black-Scholes equation, it is possible to derive an exact
solution, which is called a Black-Scholes formula and is discussed in the first section of this
chapter. However, in the case of the Black-Scholes equation with local volatility, one requires
to derive numerical methods.

There are three different class of methods for solving partial differential equations nu-
merically, including Finite Difference Method (FDM), Finite Element Method (FEM), and
Finite Volume Method (FVM). Nevertheless, due to the fact that the finite element method
is more flexible and also support by strong theory for error estimation, we decide to apply
Finite element method for deriving a numerical solution of Black-Scholes partial differential
equation with local volatility.

5.1 Black-Scholes Formula

In this section, the Black-Scholes partial differential equation with constant coefficients is
regarded, and the objective is to follow the procedure in [WDH93], to derive the explicit
solution.

For doing this, consider the Black-Scholes partial differential equation with constant coef-
ficients for call options,

∂C

∂t
− 1

2
σ2S2∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0 (5.1)

with boundary conditions,

C(0, t) = 0, C(S, t) ∼ S as S →∞

and initial condition,

C(S, 0) = max(S −K, 0).

The first step is to change the following variables,

S = Kex, t =
τ

1
2σ

2
, C = Kv(x, τ)

and by taking k1 = r
1
2
σ2 , one obtains the equation,

∂v

∂τ
=
∂2v

∂x2
+ (k1 − 1)

∂v

∂x
− k1v (5.2)

with new initial condition,

v(x, 0) = max(ex − 1, 0).



5 Solution to the Black-Scholes equation

It is worth mentioning that, there is only one parameter, k1, in the equation now. The next
step is another change of variable,

v = eαx+βτu(x, τ)

where α and β are constants to be found. Therefore,

∂

∂τ
eαx+βτu(x, τ) =

∂2

∂x2
eαx+βτu(x, τ) + (k1 − 1)

∂

∂x
eαx+βτu(x, τ)− k1e

αx+βτu(x, τ)

and simple differentiation yields,

βu+
∂u

∂τ
= α2u+ 2α

∂u

∂x
+
∂2u

∂x2
+ (k1 − 1)(αu+

∂u

∂x
)− k1u.

Then, one requires to eliminate u and ∂u
∂x . Taking,

β = α2 + (k1 − 1)α− k1 and α =
1

2
(1− k1)

leads to,

−1

4
(k1 + 1)2u+

∂u

∂τ
= (

1− k1

2
)2u+ (1− k1)

∂u

∂x
+
∂2u

∂x2
+ (k1 − 1)

(1− k1

2
u+

∂u

∂x

)
elementary mathematical simplifications result in,

∂u

∂τ
=
∂2u

∂x2
for −∞ < x <∞, τ > 0

with initial condition,

u(x, 0) = u0(x) = max(e
1
2

(k1+1)x − e
1
2

(k1−1)x, 0) (5.3)

also, recall that with this values for α and β, then,

v = e−
1
2

(k1−1)x− 1
4

(k1+1)2τu(x, τ)

as it is mentioned in [WDH93], the solution to this diffusion equation is given by,

u(x, τ) =
1

2
√
πτ

∫ ∞
−∞

u0(s)e
−(x−s)2

4π ds. (5.4)

The only remaining step is to evaluate the integral. For doing this, using the change of
variable x′ = x−s√

2τ
, and applying the substitution rule yields,

u(x, τ) =
1√
2π

∫ ∞
−∞

u0(x′
√

2τ + x)e−
1
2
x′

2

dx′.

Now, plug 5.3 into the above equation, to obtain,

u(x, τ) =

1√
2π

∫ ∞
− x√

2τ

e
1
2

(k1+1)(x+x′
√

2τ)e−
1
2
x′

2

dx′ − 1√
2π

∫ ∞
− x√

2τ

e
1
2

(k1−1)(x+x′
√

2τ)e−
1
2
x′

2

dx′
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5.1 Black-Scholes Formula

= I1 + I2.

Integrating I1, yields,

I1 =
1√
2π

∫ ∞
− x√

2τ

e
1
2

(k1+1)(x+x′
√

2τ)e−
1
2
x′

2

dx′ = e
1
2

(k1+1)x+ 1
4

(k1+1)2τN(d1)

where,

N(d1) =
1√
2π

∫ d1

−∞
e−

1
2
s2ds

and,

d1 =
x√
2τ

+
1

2
(k1 + 1)

√
2τ .

Similarly, one obtains the same result for I2, by replacing K1 + 1 by K1 − 1. Therefore,

I2 =
1√
2π

∫ ∞
− x√

2τ

e
1
2

(k1−1)(x+x′
√

2τ)e−
1
2
x′

2

dx′ = e
1
2

(k1−1)x+ 1
4

(k1−1)2τN(d2)

where,

N(d2) =
1√
2π

∫ d2

−∞
e−

1
2
s2ds

and,

d2 =
x√
2τ

+
1

2
(k1 − 1)

√
2τ .

Thus,

u(x, τ) = e
1
2

(k1+1)x+ 1
4

(k1+1)2τN(d1)− e
1
2

(k1−1)x+ 1
4

(k1−1)2τN(d2).

On the other hand, recall the definition of v,

v(x, τ) = e−
1
2

(k1−1)x− 1
4

(k1+1)2τ
(
e

1
2

(k1+1)x+ 1
4

(k1+1)2τN(d1)− e
1
2

(k1−1)x+ 1
4

(k1−1)2τN(d2)
)

= exN(d1)− e−k1τN(d2).

Consequently,
C(x, τ) = Kv(x, τ) = KexN(d1)−Ke−k1τN(d2).

Finally, in order to recover the formula based on the parameters of the Black-Scholes equa-
tion, apply the following change of variables,

x = log(
S

K
), τ =

σ2

2
t.

Then,
C(S, t) = SN(d1)−Ke−rtN(d2) (5.5)

where,

d1 =
log( SK ) + (r + σ2

2 )t

σ
√
t

and d2 =
log( SK ) + (r − σ2

2 )t

σ
√
t

and this is called the Black-Scholes formula for European call options. In order to derive a
similar formula for a European put options, the naive way is to follow the same procedure
for put options. However, the smarter way is to use the obtained result for call options and
apply the put-call parity,
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5 Solution to the Black-Scholes equation

Definition 5.1.1. Put-Call parity: Put-call parity states the relationship between the
European call option and European put option of the same strike and maturity on the same
stock.[Chr96]

C − P = S −Ke−rt.
Therefore, the formula for the European put option is obtained by,

P (S, t) = −SN(−d1) +Ke−rtN(−d2) (5.6)

where N ,d1, and d2 are the same as the formula for the European call option.
Graph 5.1 and 5.2 show the value for European call and European put options respectively,

using the Black-Scholes formula (where σ = 0.5, r = 0.05, K = 50, and the domain [0, 100]×
[0, 1]).

Figure 5.1: European call option using the Black-Scholes formula

Figure 5.2: European put option using the Black-Scholes formula
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5.2 Numerical Approximation

5.2 Numerical Approximation

As it is mentioned earlier, the objective of this section is to derive the numerical method
to approximate the Black-Scholes partial differential equation with local volatility for the
European put options. We follow the discussion of Achdou and Pironneau in [AP05] and
[PA09], to derive a first order finite element method based on the Crank-Nicolson scheme to
the Black-Scholes parabolic differential equation with local volatility.

As it is demonstrated in [SA86], the idea behind the finite element method is to choose
finite number of functions (called ”shape functions”), and to approximate the exact solution
by a combination of these shape functions. Shape functions are usually chosen to be piecewise
polynomial, because it allows us to fit the geometry of the problem and generate polynomials.
By doing this, the computer can assemble a discrete problem and solve it.

Deriving finite element method usually consists of 4 main steps. First of all, weak formula-
tion of the partial differential equation is derived, then discretization of the weak formulation
is done, the next step is to define the shape functions (the order of this shape functions is,
in fact, the order of finite element method) and rewriting the obtained discrete equation in
matrix form, and the final step is to solve the obtained linear system.

5.2.1 Discretization of Weak Formulation

Recall that the weak formulation of the Black-Scholes partial differential equation with local
volatility for European put options was obtained in the previous chapter. Therefore, the
next step is to discretize this weak formulation. In the case of parabolic partial differential
equations, discretization is done in two steps. First, the semidiscrete problem is derived
by discretizing the problem in one of the variables. The second step is full discretization
of the problem, which is done by replacing the function space V , by a subspace of finite
dimension Vh. In the case of Black-Scholes equation with local volatility, one obtains the
time semidiscrete problem by introducing a partition of the interval [0, T ] into subintervals
[tm−1 − tm] , 1 ≤ m ≤M , such that,

0 < t0 < t1 < t2 < ... < tM = T.

The size of each interval tm − tm−1 is denoted by ∆tm, and define ∆t = maxm=1,...,M ∆tm.
As it is mentioned earlier, our objective is to discretize the weak formulation under the
Crank-Nicolson scheme. Thus, the semidiscrete problem is to find Pm ∈ V , m = 0, ...,M ,
such that P 0 = P0, where it is assumed that P0 ∈ V , and for all Pm ∈ V and for all v ∈ V ,(Pm − Pm−1

∆tm
, v
)

+
1

2

(
a(Pm, v) + a(Pm−1, v)

)
= 0

where a is the bilinear form defined earlier. It is also worth noting that the implicit Euler
scheme is used to approximate derivative in t.

In order to tackle the second part of the discretization process, one requires to partition
[0, S̄] into subintervals κi = [Si−1, Si] , 1 ≤ i ≤ N + 1, such that,

0 < S0 < S1 < S2 < ... < SN < SN+1 = S̄

where S̄ is sufficiently large upper bound for underlying asset price (usually regarded as
1.5K or 2K). We denote the length of the interval κi by hi, and h is defined as h =
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5 Solution to the Black-Scholes equation

maxi=1,..,N+1 hi. We also define the mesh Th of the interval [0, S̄] as {κ1, κ2, ..., κN+1}.
Moreover, one requires to assume that there exists a node in Th such that coincides with the
strike K.

Then, we need to define the discrete space Vh,

Vh =
{
vh ∈ C0([0, S̄]), vh(S̄) = 0; such that for all κ ∈ Th, vh|κ is affine

}
(5.7)

where the assumption in mesh secures that P0 ∈ Vh.
Thus, the discrete problem obtained by applying the Crank-Nicolson scheme in time is:
Find (Pmh )0≤m≤M , Pmh ∈ Vh satisfying,

P 0
h = p0 (5.8)

and for all m, 1 ≤ m ≤M , and for all vh ∈ Vh,

(Pmh − Pm−1
h , v) +

∆tm
2

(
am(Pmh , vh) + am−1(Pm−1

h , vh)
)

= 0 (5.9)

where am = atm , and as it is defined earlier,

at(v, w) =

∫ S̄

0

S2σ2(S, t)

2

∂v

∂S

∂w

∂S
dS

+

∫ S̄

0

(
− r(t) + σ2(S, t) + Sσ(S, t)

∂σ

∂S
(S, t)

)
S
∂v

∂S
wdS + r(t)

∫ S̄

0
vwdS. (5.10)

5.2.2 Discrete Problem in Matrix Form

The next step is to define shape functions. We apply the first order polynomials to approxi-
mate the solution, thus the finite element method is first order. Consider the piecewise linear
function wi, where i = 0, 1, ..., N + 1, that is equal to 1 at Si, and 0 at any other nodes,
defined by,

wi(S) =

{
S−Si−1

hi
if S ∈ (Si−1, Si)

Si+1−S
hi+1

if S ∈ (Si, Si+1).

Note that,

∂wi

∂S
=

{
1
hi

if S ∈ (Si−1, Si)
1

hi+1
if S ∈ (Si, Si+1).

Then, (wi)i=0,...,N is the nodal basis of Vh and,

Pmh (S) =

N∑
i=0

Pmh (Si)wi(S).

Furthermore, for 0 ≤ i, j ≤ N , let M ∈ R(N+1)×(N+1) be the mass matrix, defined by Mi,j =
(wi, wj), and Am ∈ R(N+1)×(N+1) denotes the stiffness matrix defined by Ami,j = atm(wj , wi).

Also, note that Pm = (Pmh (S0), Pmh (S1), ..., Pmh (SN ))T and P 0 = (Pm0 (S0), Pm0 (S1), ..., Pm0 (SN ))T .
Then, the matrix form of the equation 5.9 is,

M(Pm − Pm−1) +
∆tm

2
(AmPm +Am−1Pm−1) = 0. (5.11)
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Then, we can calculate the entries of mass matrix M and stiffness matrices Am. Regarding
the definition of shape functions and their derivatives, simple mathematical calculations lead
to, ∫ S̄

0
wiwi−1dS =

hi
6

∫ S̄

0
Swi

∂wi−1

∂S
dS = −2Si−1 + Si

6∫ S̄

0
wi

2
dS =

hi + hi+1

3

∫ S̄

0
Swi

∂wi

∂S
dS = −hi+1 + hi

6
if i > 0∫ S̄

0
w02dS =

h1

3

∫ S̄

0
Sw0∂w

0

∂S
dS = −h1

6∫ S̄

0
wi+1widS =

hi+1

6

∫ S̄

0
Swi

∂wi+1

∂S
dS =

2Si+1 + Si
6

.

Finally, using these calculations and applying the definition of the stiffness matrices, one
obtains the entries of Am as,

Am0,0 =
r(tm)

2
h1

Ami,i =
S2
i σ

2(tm, Si)

2

( 1

hi
+

1

hi+1

)
+
r(tm)

2

(
hi + hi+1

)
, for 1 ≤ i ≤ N

Ami,i−1 = −S
2
i σ

2(tm, Si)

2hi
+
r(tm)Si

2
, for 1 ≤ i ≤ N

Ami,i+1 = −S
2
i σ

2(tm, Si)

2hi+1
− r(tm)Si

2
, for 0 ≤ i ≤ N − 1.

It is worth noting that, the entries of the stiffness matrices were obtained for general case,
where the mesh is not necessarily uniform. However, in this chapter we regard only uniform
meshes, in which h = hi , for all i. Similarly, entries of the mass matrix M is obtained by,

M0,0 =
h1

3

Mi,i =
hi + hi+1

3
, for 1 ≤ i ≤ N

Mi,i−1 =
hi
6
, for 1 ≤ i ≤ N

Mi,i+1 =
hi+1

6
, for 0 ≤ i ≤ N − 1.

Therefore, it only remains to solve the obtained linear system.

5.2.3 Conjugate Gradient Method

There are two main families of methods to solve the linear system Ax = b, direct methods and
iterative methods. In direct methods, such as Gaussian elimination, the problem is solved
by finite number of steps, and if we disregard rounding errors, then the obtained solution is
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5 Solution to the Black-Scholes equation

exact. On the other hand, iterative methods begin by an initial guess, and produce better
approximation, using the previous approximation [Str93]. Direct methods are usually more
straightforward to apply, however, when the dimension of the problem is big or the matrix
of the linear system is sparse, they are costly and it is more appropriate to apply iterative
methods. Due to the fact that the matrix obtained by finite element method is sparse, and
in general, by increasing the mesh points can become significantly big, we decide to apply
an iterative method.

Conjugate gradient method is an iterative method which is widely used to solve the linear
systems. As it is shown in [KS88], when applying to the technical applications, such as finite
difference and finite element methods, conjugate gradient method converges very quickly.
The history of the conjugate gradient method began by articles of Hestenes and Stiefel
[HS52], and Lanczos [Lan50], which revolutionized the numerical solution of large linear
system of equations [KNGK12].

We follow the discussion in [Pyt08], to illustrate the conjugate gradient method, and
apply it to obtain the solution of the Black-Scholes partial differential equations with local
volatility. The main objective of the conjugate gradient method is to choose direction vectors
{pi}ni=1, which are conjugate, i.e.

pTi Apj = 0 , for all i 6= j, i, j = 1, ..., n. (5.12)

Then, apply the expression xk+1 = xk + αkpk, to obtain a better approximation of the
problem, where α is a constant to be found.

Regard the problem of finding x ∈ Rn satisfying the linear system,

Ax = b , A ∈ Rn×n, b ∈ Rn

where, A is real, symmetric and positive definite. The fact of the matter is that, definiteness
of A eliminates division by zero, and symmetry provides a short recurrence [Str07]. This
problem is equivalent to the minimization of,

f(x) =
1

2
xTAx− bTx (5.13)

over the space Rn. The next step is to find the constant α. For doing this, assume that the
residual of the problem Ax = b is denoted by rk = Axk − b = gk. Then, form the function,

φk(α) = f(xk + αpk).

Our goal is to find αk that minimize φk(α), i.e. φk(αk) = 0. Thus,

φk(αk) = g(xk + αkpk)
T pk = (A(xk + αkpk)− b)T pk = 0

and this yields,

α = −
rTk pk

pTkApk
. (5.14)

It remains to calculate the direction pk based on the approach of Hestenes and Stiefel [HS52].
They proposed the method to calculate the direction pk, based on the previous direction and
the current gradient. As a result, under the assumption that βk is a coefficient which depends
on the data from the current and previous iterations, one obtains,

pk = −rk + βkpk−1 = −g + βkpk−1
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5.2 Numerical Approximation

applying 5.12 leads to,

pTkApk−1 = −rTk Apk−1 + βkp
T
k−1Apk−1 = 0.

Thus,

βk =
rTk Apk−1

pTk−1Apk−1
. (5.15)

It is worth mentioning that the convergence analysis of the conjugate gradient method is
given in [Pyt08]. Based on the above discussion, one can derive the following algorithm for
conjugate gradient method,

Algorithm 1. (The conjugate gradient algorithm)

1. Choose an initial guess x1 ∈ Rn. Set

k1 = 1 and p1 = −r1 = −g1.

2. Calculate,

αk = −
rTk pk

pTkApk
.

3. Set xk+1 = xk + αkpk and rk+1 = Axk+1 − b. If ||rk+1|| is sufficiently small (in
comparison to the given tolerance), then STOP. Else, calculate,

βk+1 =
rTk+1Apk

pTkApk
and pk+1 = −rk+1 + βk+1pk.

4. Increase k by one and go to step 2.

We applied the conjugate gradient method to find the approximate solution of Black-Scholes
equation for European put options, obtained by finite element method introduced in this
chapter. The obtained value for the put option with K = 50, r = 0.05, σ = 0.5, 50 × 50
nodes, and the domain [0, 100]× [0, 1] is shown in the figure 5.3.

In addition, since we have obtained the explicit solution of Black-Scholes equation for
put options, we can compare it with the approximate solution of finite element methods.
Figure 5.4 shows the point-wise error produced by the Crank-Nicolson scheme and first
order finite element method in the domain [0, 200]× [0, 1] with 50× 50 nodes. According to
our experiments, the L2−norm of the error for 200× 200 nodes is less than 0.1%, which can
be regarded as an acceptable result.
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5 Solution to the Black-Scholes equation

Figure 5.3: European put option using the finite element method

Figure 5.4: The point-wise error produced by the Crank-Nicolson scheme and first order
finite element method
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6 Adaptive Mesh Refinement

In this chapter, we would like to derive a posteriori error analysis to the finite element
method, that applied in the previous chapter to discretize and solve the Black-Scholes partial
differential equation with local volatility. We are going to apply the strategy mentioned in
the paper [BBM05], which consists of obtaining two error indicators of the residual type,
that one of them is global with respect to price variable S, and local with respect to time t,
while the second one is local with respect to both price and time.

In order to derive the analysis, one needs some contents of previous chapters. Thus, we
discuss and rewrite them in the first section of this chapter. The second section is devoted
to deriving reliable and efficient error estimators. And in the third section, we propose a
strategy to apply the obtained error indicators, so as to derive adaptive mesh refinement.

It is also should be noted that the contents of this chapter follow the procedure of the fifth
chapter of the book by Achdou and Pironneau [AP05].

6.1 Discretization of Black-Scholes Equation with Local Volatility

As it is discussed earlier, in this section, we would like to reformulate and expand, the
fundamental results of previous chapters, which is needed for the analysis of this chapter.

We regard the Black-Scholes partial differential equation with local volatility for European
put options,

∂u

∂t
− σ2S2

2

∂2u

∂S2
− rS ∂u

∂S
+ ru = 0 in Ω× (0, T ]

u(S̄, t) = 0 where t ∈ (0, T ]

u(S, 0) = u0(S) = max(S −K, 0) in Ω

where Ω = (0, S̄), with the assumption that the volatility σ(S, t) and the interest rate r(t),
are smooth functions. Moreover, we assume that there exist constants σ, σ̄, Cσ and R, where
0 ≤ σ ≤ σ̄, Cσ ≥ 0 and R > 0, such that,

σ ≤ σ(S, t) ≤ σ̄ in R+ × [0, T ] (6.1)

|S ∂σ
∂S
|≤ Cσ in R+ × [0, T ] (6.2)

0 ≤ r(t) ≤ R in [0, T ]. (6.3)

In the case of function spaces, besides L2 and V , we require to introduce the spaces D(R+)
and D(Ω̄), which are the space of infinitely differentiable functions with compact support in
R+ and Ω respectively. Then, as it is shown in [AP05], D(Ω̄) is densely embedded in V . We
define V0 as the closure of D(Ω) in V . Therefore, V0 is a subspace of V , which contains the
functions that are zero at S̄, then its dual space V ′0 , is defined by,

||w||V ′0= sup
v∈V0

(w, v)

|v|V
. (6.4)
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Then, the bilinear form is defined by,

at(u, v) =
(σ2

2
S
∂u

∂S
, S
∂v

∂S

)
+
(

(− r + σ2 + Sσ
∂σ

∂S
)S
∂u

∂S
, v
)

+ r(u, v). (6.5)

As a consequence, the weak formulation is defined as,

Find u ∈ C0([0, T ];L2(Ω)) ∩ L2(0, T ;V0), such that

u|t=0= u0 in Ω and for a.e. t ∈ (0, T ) (6.6)

∀v ∈ V0, (
∂u

∂t
(t), v) + at(u(t), v) = 0. (6.7)

The next step is to prove the boundedness of the bilinear form. For doing this, assume that
µ is a positive constant, then for all v, w ∈ V0,

|at(v, w)|≤ µ|v|V |w|V . (6.8)

Furthermore, assume that there exists a constant λ > 0, then based on the G̊arding’s in-
equality,

∀t ∈ [0, T ], ∀v ∈ V0, at(v, v) ≥ σ2

4
|v|2V−λ||v||2. (6.9)

Finally, we require to introduce the norm which is bounded with regard to the weak formu-
lation 6.7, thus define,

[[v]](t) =
(
e−2λt||v(t)||2+

1

2
σ2

∫ t

0
e−2λτ |v(τ)|2V dτ

) 1
2
. (6.10)

Then, by plugging u(t)e−2λt instead of v, in 6.7 and some mathematical operations, one
obtains,

[[u]](t) ≤ ||u0||. (6.11)

Thus, applying 6.8, integrating the expression in the norm 6.10 and mathematical simplifi-
cations yields,

||e−λt∂u
∂t
||L2(0,T ;V ′0)≤

√
2
µ

σ
||u0||. (6.12)

6.1.1 Time Semi-Discrete Problem

Recall that we partitioned the interval [0, T ], into subintervals [tn−1, tn], 1 ≤ n ≤ N , where

0 < t0 < t1 < t2 < ... < tN = T.

Then, ∆tn = tn − tn−1. In addition, we define the regularity parameter ρ∆t,

ρ∆t = max
2≤n≤N

∆tn
∆tn−1

. (6.13)
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6.1 Discretization of Black-Scholes Equation with Local Volatility

Therefore, applying the Crank-Nicolson scheme, we obtain the following semidiscrete prob-
lem,

u0 = u0 (6.14)

∀n, 1 ≤ n ≤ N, ∀v ∈ V0,
(un − un−1

∆tm
, v
)

+
1

2

(
atn(un, v) + atn−1(un−1, v)

)
= 0. (6.15)

It is also worth mentioning that we introduce the notation u∆t, to show the function that is
affine on each interval and satisfies u∆t(tn) = un.

The next step is to introduce the discrete version of the norm [[u]]. Therefore, regard the
identity,

(a− b, a) =
1

2
|a|2+

1

2
|a− b|2−1

2
|b|2.

Then, replacing v by un in the bilinear form 6.5 and applying G̊arding’s inequality 6.9 yields,

(1− 2λ∆tn)||un||2+
1

2
∆tnσ

2|un|2V≤ ||un−1||2. (6.16)

Now, multiplying both sides of the equation by
∏n−1
i=1 (1 − 2λ∆ti) and taking the sum of

equations on n, lead to,

( n∏
i=1

(1− 2λ∆ti)
)
||un||2+

1

2
σ2

n∑
m=1

∆tm

(m−1∏
i=1

(1− 2λ∆ti)
)
|um|2V≤ ||u0||2. (6.17)

Hence, according to the equation 6.17, we define the discrete norm,

[[(vm)]]n =
(( n∏

i=1

(1− 2λ∆ti)
)
||vn||2+

1

2
σ2

n∑
m=1

∆tm

(m−1∏
i=1

(1− 2λ∆ti)
)
|vm|2V

) 1
2
. (6.18)

As a result,

[[(um)]]n ≤ ||u0||. (6.19)

The next goal is to find the equivalent relation between the norms [[(um)]]n and [[u∆t]](tn).
This problem is addressed by the following lemma,

Lemma 6.1.1. There exists a constant 0 < α ≤ 1
2 , such that for all (vn)0≤n≤N ∈ V N+1

0

satisfies,

1

8
[[(vm)]]2n ≤ [[v∆t]]

2(tn) ≤ max(2, 1 + ρ∆t)[[(v
m)]]2n +

1

2
σ2∆t1|v0|2V (6.20)

where ∆t ≤ α
λ .

Proof. Regarding the definition of the norm [[v]] and v∆t lead to,

e2λtm−1

∆t

∫ tm

tm−1

e−2λτ |v∆t|2V (τ)dτ =∫ 1

0
e−2λ∆tmτ

(
|vm|2V τ2 + |vm−1|2V (1− τ)2 + 2(vm−1, vm)V τ(1− τ)

)
dτ.
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6 Adaptive Mesh Refinement

Now, use the inequality ab ≥ −a2

4 − b
2 with a = |vm|V and b = |vm−1|V and let ∆tm = 0.

Then,
1

3

(
|vm|2V +|vm−1|2V +(vm, vm−1)V

)
≥ 1

4
|vm|2V .

In addition, observe that e−2λ∆tmτ is continuous with regard to ∆tm. Therefore, there exists
a constant 0 < α < 1

2 that,∫ tm

tm−1

e−2λτ |v∆t|2V (τ)dτ ≥ ∆tm
8

e−2λtm−1 |vm|2V .

On the other hand, if 2λ∆t < 1, then
∏m−1
i=1 (1 − 2λ∆ti) ≤ e−2λtm−1 . Two last inequalities

lead to,

1

2
σ2

n∑
m=1

∆tm

(m−1∏
i=1

(1− 2λ∆ti)
)
|vm|2V≤ 8

(1

2
σ2

∫ tn

0
e−2λτ |v∆t|2V (τ)dτ

)
.

Moreover, ( n∏
i=1

(1− 2λ∆ti)
)
||vn||2≤ e−2λtn |vn|2V .

Hence, the upper estimation is obtained by combining two last expressions.
In the case of the lower estimate, again starting with the first equation of the proof, and

applying mathematical simplifications result in,

e2λtm−1

∆t

∫ tm

tm−1

e−2λτ |v∆t|2V (τ)dτ ≤

|vm|2V
∫ 1

0
e−2λ∆tmττdτ + |vm−1|2V

∫ 1

0
e−2λ∆tmτ (1− τ)dτ ≤ 1

2

(
|vm−1|2V +|vm|2V

)
.

Taking sum and further simplification leads to,∫ tm

tm−1

e−2λτ |v∆t|2V (τ)dτ ≤ 1

2

n∑
m=1

∆tme
−2λtm−1

(
|vm−1|2V +|vm|2V

)
.

Based on the fact that there exists a constant α2 <
1
2 , that if λ∆t ≤ α2 then,

e−2λtm−1 ≤ 2
m−1∏
i=1

(1− 2λ∆ti)

one obtains,∫ tn

0
e−2λτ |v∆t|2V (τ)dτ ≤

n∑
m=1

∆tm

m−1∏
i=1

(1− 2λ∆ti)
(
|vm−1|2V +|vm|2V

)
.

Applying the definition of ρ∆t in 6.13, results in,∫ tn

0
e−2λτ |v∆t|2V (τ)dτ ≤ (1 + ρ∆t)

n∑
m=1

∆tm

m−1∏
i=1

(1− 2λ∆ti)|vm|2V +∆t1|v0|2V .
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6.2 Error Indicators

Furthermore, recall the assumption λ∆t ≤ α2. Thus, e−2λtn ≤ 2
(∏n

i=1(1− 2λ∆ti)
)

, which

leads to inequality,

||vn||2e−2λtn ≤ 2||vn||2
( n∏
i=1

(1− 2λ∆ti)
)

choosing α as a minimum of two constants α1 and α2 terminates the proof.

Combining the 6.19 and 6.20 yields,

∀n, 1 ≤ n ≤ N, [[u∆t]](tn) ≤
(

max(2, 1 + ρδt)||u0||2+
1

2
σ2∆t1|u0|2V

) 1
2
. (6.21)

6.1.2 Fully Discrete Problem

In order to illustrate the full discretization of the Black-Scholes equation for the European
put options, consider the Tnh as a family of grids of Ω, for all n, 0 ≤ n ≤ N . Then, the
diameter of the element ω ∈ Tnh is denoted by hω. Moreover, minimum and maximum price
of each element ω is shown by Smin(ω) and Smax(ω) respectively.

We also need to make the assumption that, there exists a constant ρh that satisfies,

hω ≤ ρhhω′ (6.22)

where ω and ω′ are adjacent elements of Tnh.
Then, for every h, we define the discrete spaces,

Vnh = {vh ∈ V,∀ω ∈ Tnh, vh|ω ∈ P1}, V 0
nh = vnh ∩ V 0. (6.23)

It remains to derive a fully discrete problem. Suppose that u0 ∈ V0h. Thus,

Find (unh)0≤n≤N , u
n
h ∈ V 0

nh, such that,

∀n, 1 ≤ n ≤ N, ∀vh ∈ V 0
nh,

(unh − un−1
h

∆tn
, vh

)
+

1

2

(
atn(unh, vh) + atn−1(un−1

h , vh)
)

= 0.

(6.24)
Hence, stability estimate leads to,

[[umh ]]n ≤ ||u0||. (6.25)

Note that, uh,∆t is denotes the function that is affine on each time interval and satisfies
uh,∆t = unh

6.2 Error Indicators

In this section, we are going to derive error indicators and proving their efficiency and
reliability. As it is discussed earlier, we apply two families of error indicators, the first one,
which is local in t and global in S, is denoted by ηn, and the second one, which is local in
both t and S, is denoted by ηnω. They can be computed explicitly, and act as an estimation
for the error in each time interval (ηn) and each element (ηnω)

Besides deriving the formula for ηn and ηnω, we would like to show that these error
indicators are reliable, which means that they are the upper bound for the error (subsection
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6 Adaptive Mesh Refinement

6.2.1). Our next goal is to prove their efficiency, which means, the error is the upper bound
for them (subsection 6.2.2).

By doing this, we obtain the formulas that estimate the error explicitly, in a reliable and
efficient way. Then, we can apply these formulas to refine the mesh adaptively.

It is also worth noting that due to the fact that the proofs of this section are quite long
and to make following the procedure of deriving error estimators easier, proofs are given in
the appendix.

6.2.1 An Upper Bound For the Error

As it is illustrated earlier, our objective in this subsection is to bound the error [[u −
uh,∆t]](tn), by error indicators. For doing this, using the triangle inequality, the following
inequality is applied,

[[u− uh,∆t]](tn) ≤ [[u− u∆t]](tn) + [[u∆t − uh,∆t]](tn).

However, before evaluating these estimates, we require to make further assumptions.
Assume that σ and S ∂σ

∂S are Lipschitz continuous with regard to S and t. In addition,
suppose that the interest rate r is Lipschitz continuous with respect to t.

Therefore, there exist constants L1, L2 and L3 that for all t, t′ ∈ [0, T ] satisfy,

||σ2(., t)− σ2(., t′)||L∞(0,S̄)≤ L1|t′ − t|,

||−r(t) + r(t′) +
σ2(., t)− σ2(., t′)

2
+ S

(
σ(., t)

∂σ

∂S
(., t)− σ(., t′)

∂σ

∂S
(., t′)

)
||L∞(0,S̄)

≤ L2|t′ − t|,
|r(t)− r(t′) ≤ L3|t′ − t|.

Now, we derive two proposition for evaluating mentioned estimates, then we express the
theorem at the end of this subsection to illustrate the final result.

Proposition 1. Assume that u0 ∈ V1h, and there exists a constant α < 1
2 , which under the

condition that λ∆t ≤ α, it holds,

[[u− u∆t]](tn) ≤ c
( L
σ2
c(u0)∆t+

µ

σ2
(1 + ρ∆t)[[u∆t − uh,∆t]](tn) +

µ

σ2
(

n∑
m=1

η2
m)

1
2

)
(6.26)

where,

η2
m = ∆tme

−2λtm−1
σ2

2
|umh − um−1

h |2V . (6.27)

Also, L = 4L1 +2L2 +L3, c(u0) =
(

max(2, 1+ρδt)||u0||2+1
2σ

2∆t1|u0|2V
) 1

2
, and c is a positive

constant.

Moreover, the second estimate is given by the following proposition,

Proposition 2. Assume that u0 ∈ V1h, then there exists a constant c, that for each tn, (1 ≤
n ≤ N) satisfies,

[[u∆t − uh,∆t]]2(tn) ≤ c

σ2
max(2, 1 + ρ∆t)

n∑
m=1

∆tm

m−1∏
i=1

(1− 2λ∆ti)
∑

ω∈Tmh

η2
m,ω (6.28)
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where,

ηm,ω =
hω

Smax(ω)

∣∣∣∣∣∣umh − um−1
h

∆tm
− rS

∂umh
∂S

+ rumh

∣∣∣∣∣∣
L2(ω)

. (6.29)

Now, it is time to apply these two propositions to derive the theorem for a posteriori error
estimate.

Theorem 6.2.1. Assume that u0 ∈ V1h and λ∆t ≤ α, then there exists a constant c, that
for each tn, (1 ≤ n ≤ N) satisfies,

[[u− uh,∆t]](tn) ≤ c
( L
σ2
c(u0)∆t+

µ

σ2

( n∑
m=1

η2
m +

∆tm
σ2

(1 + ρ∆t)
2 max(2, 1 + ρ∆t)

m−1∏
i=1

(1− 2λ∆ti)
∑

ω∈Tmh

η2
m,ω

) 1
2
)

(6.30)

where, L and c(u0) are as given before, and ηm and ηm,ω are evaluated according to 6.27 and
6.29, respectively.

Therefore, we bound the error by error indicators ηm and ηm,ω. The next step is to show
that these error indicators are bounded by the error.

6.2.2 An Upper Bound For the Error Indicators

As illustrated before, the objective of this subsection is to derive two propositions, in order
to bound ηm and ηm,ω separately.

Meanwhile, for (vn)1≤n≤N , vn ∈ V0, we require to introduce the notation [[vn]] as,

[[vn]]2 =
σ2

2
∆tn

n−1∏
i=1

(1− 2λ∆ti)|vn|2V .

Now, we can state the proposition to bound ηm,

Proposition 3. Assume that u0 ∈ V1h and λ∆t ≤ α, then there exists a constant c, such
that for 2 ≤ n ≤ N ,

ηn ≤ c

(
[[un − unh]] +

√
ρ∆t[[u

n−1 − un−1
h ]] +

e−λtn−1

σ

(∣∣∣∣∣∣∂(u− u∆t)

∂t

∣∣∣∣∣∣
L2(tn−1,tn;V ′0)

+ ||u− u∆t||L2(tn−1,tn;V0)

)
+
( L
σ2

(max(1, ρ∆t))
1
2 +

λµ

σ2

)
∆tn||u0||

)
(6.31)

also,

η1 ≤ c

(
[[u1 − u1

h]] +
1

σ

(∣∣∣∣∣∣∂(u− u∆t)

∂t

∣∣∣∣∣∣
L2(t0,t1;V ′0)

+ ||u− u∆t||L2(0,t1;V0)

)
+
L+ λµ

σ2
∆t1||u0||+L

σ
(∆t1)

3
2 |u0|V

)
. (6.32)
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6 Adaptive Mesh Refinement

Nevertheless, before deriving the corresponding expression for ηm,ω, we require to make
further assumptions.

Assume that, Kω contains all elements in Tnh that share a node with ω. Then, we define,

V (Kω) = {v ∈ L2(Kω); S
∂v

∂S
∈ L2(Kω)}

with the norm ||v||V (Kω)=
( ∫

Kω
v2(S) + S2( ∂v∂S (S))2

) 1
2
. In addition, assume that V0(Kω) is

the closure of D(Kω) in V (Kω), with the norm defined by ||v||V0(Kω)=
( ∫

Kω
S2( ∂v∂S (S))2

) 1
2
.

Finally, we denote the dual space of V0(Kω), by V ′0(Kω) with the dual norm.
Now, we can derive the next proposition.

Proposition 4. For each ω ∈ Tnh where, 1 ≤ n ≤ N , it holds,

ηn,ω ≤ c

(∣∣∣∣∣∣un−1 − un−1
h − (un − unh)

∆tn

∣∣∣∣∣∣
V ′0(Kω)

+ µ
∣∣∣∣∣∣S∂(un − unh)

∂S

∣∣∣∣∣∣
L2(Kω)

)
. (6.33)

To conclude, by deriving a posteriori error analysis, we obtained the formula for error
indicators ηm (local in t and global in S) and ηm,ω (local in t and S), and proved that the
error caused by applying finite element method is bounded from below and above by these
error indicators.

It remains to apply ηm and ηm,ω, so as to refine the mesh adaptively. And this is the
objective of the next section.

6.3 Refinement Strategy

In this section, we are going to derive and implement the algorithm, which uses ηm and ηm,ω,
defined by 6.27 and 6.29, respectively.

The algorithm begins with applying the uniform finite element method described in chapter
5, to the Black-Scholes partial differential equation with local volatility for European put
options. Then, use 6.27 and 6.29 to compute error indicators ηm and ηm,ω, respectively.
Then, according to Theorem 6.2.1, the global error indicator of S-discretization in the time
interval [tm−1, tm] can be computed by ∆tm

σ2

∑
ω∈Tnh η

2
m,ω. The corresponding expression for

t-discretization in the time interval [tm−1, tm], is given by η2
m. Using these two estimates, we

can also compute the global error.
If the global error is less than the given tolerance δ, then it shows that the algorithm

obtains the solution with desired precision, thus it should terminate. Otherwise, we need to
perform more refinements.

In order to decide which time interval to refine, form the expressions,

ζ̄ = max
m

ηm and ζ = min
m

ηm.

Then, for each m, that satisfies ηm >
ζ̄+ζ

2 , refinement should be done. On the other hand,
after determining candidates (time intervals) for refinement, we have to decide whether to
refine in t or S. And for this purpose, we compare,

η2
m and

∆tm
σ2

∑
ω∈Tnh

η2
m,ω.
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6.3 Refinement Strategy

If η2
m is greater or equal, it shows that the error in t is higher than S, so the refinement

should be performed in t, therefore intersect the time interval [tm−1, tm]. Otherwise, the
refinement needs to be done in the S variable. Hence, compute the following expressions,

ξ̄ = max
ω

ηm,ω and ξ = min
ω
ηm,ω

and intersect those price intervals which satisfy ηm,ω >
ξ̄+ξ

2 . It is worth noting that refining
in S leads to producing hanging nodes, which is solved by applying more restrictions to
the problem. Due to the fact that we applied the conforming finite element method, the
constraints should simply be chosen in a way to ensure that the discrete solution space
remains a subspace of the continuous space.[BKSY17]

The next step is to update variables and error indicators after refinement

In other words, the algorithm is as follows,

Algorithm 2. (Adaptive mesh refinement)

1. Calculate the discrete solution in uniform mesh

2. Compute error indicators ηm and ηm,ω

3. For each time interval [tm−1, tm], compute

η2
m and

∆tm
σ2

∑
ω∈Tnh

η2
m,ω

4. If global error is less than the tolerance, then algorithm terminates. Otherwise, com-
pute

ζ̄ = max
m

ηm and ζ = min
m

ηm.

5. For intervals (∆tm), that ηm >
ζ̄+ζ

2 , compare

η2
m and

∆tm
σ2

∑
ω∈Tnh

η2
m,ω.

If η2
m is greater or equal, then intersect the interval [tn−1, tn]. Otherwise,

6. Compute

ξ̄ = max
ω

ηm,ω and ξ = min
ω
ηm,ω.

And, intersect elements in the interval ∆tm that satisfy, ηm,ω >
ξ̄+ξ

2 .

7. Update variables and error indicators, and start from step 3.

In the case of numerical experiments, figures 6.1 shows the value of the error estimator ηm
for the put option with K = 0, r = 0.05, σ = 0.5, the domain [0, 100] × [0, 1], and 50 × 50
nodes.
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6 Adaptive Mesh Refinement

Figure 6.1: Error indicator ηm

The figure for the error estimator ηmω with the same data is given in 6.2 . According to
these figures, which totally match the actual error that we obtained in the chapter 5, the
error is higher near the strike and the maturity.

Figure 6.2: Error indicator ηm,ω

Moreover, we implement this algorithm to refine the mesh adaptively. According to the
shapes of the error estimators and also the results of chapter 5, we expect the mesh to be
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6.3 Refinement Strategy

refined around maturity and strike more than other areas in the domain. Figures 6.3, 6.4,
6.5, and 6.6 show the obtained mesh grid after 0, 20, 50, and 100 refinement respectively,
which fulfill our expectations.

Figure 6.3: Uniform mesh Figure 6.4: Mesh after 20 refinement

Figure 6.5: Mesh after 50 refinement Figure 6.6: Mesh after 100 refinement

In addition, we perform the algorithm for the put option with σ = 0.5, r = 0.05, K = 50,
T = 1, on the domain [0, 200] × [0, 1], and with 80 × 20 nodes. Then, we evaluate the
t-discretization and S-discretization error of each time step. According to our results, the
maximum error of these time steps reduce to around 10−2 after 50 refinement.

It also should be noted that similar to other cases in this thesis, we use MATLAB [Mat14],
for performing the algorithm and obtaining the results.

43



6 Adaptive Mesh Refinement

44



7 Calibration of Local Volatility

After regarding the Black-Scholes equation in mathematical and numerical points of view in
previous chapters, our objective in this chapter is to discuss some limitations of this model
in real life applications. Then in the second section, we aim to follow the method mentioned
in the paper [HR05], in order to tackle some of these shortcomings. In the last section of this
chapter, we apply European call options available on the market, to examine this method.

7.1 Shortcomings of Black-Scholes Equation

In this section, we follow the paper [Ten11], in order to illustrate some shortcomings of
Black-Scholes equation.

While the Black-Scholes equation is one of the greatest achievements in financial theory
and is widely used by traders, there are also some critics that challenge the assumptions of
the Black-Scholes equation.

Illustration of some challenging assumptions of Black-Scholes equation is given below,

• Volatility is constant over time: According to volatility clustering property, ”large
changes tend to be followed by large changes and small changes tend to be followed
by small changes” [Man67]. Moreover, it is shown that the volatility is correlated with
asset price returns and trading volumes [Fre83]. Therefore, volatility cannot be con-
stant over time, particularly, in long-term.

• Stock price follows the random walk: Based on this assumption, the price of
the underlying asset increases and decreases with the same probability at each time.
However, due to the fact that asset prices are obtained by different economic factors,
their movements do not affected by the same probability in different times and prices.

• Returns are log-normally distributed: In contrast to stable distributions such as
log-normal, according to [Cla73], asset returns usually have a semi-heavy tails with
finite variance in real markets.

• Markets are perfectly liquid: Based on the fact that traders have financial lim-
itations to invest, and this point that the fraction of options cannot be traded, this
assumption cannot be realistic too.

• Interest rate is constant: On the one hand, there are no risk-free rates in real world.
On the other hand, alternative rates change over time.



7 Calibration of Local Volatility

• The underlying asset does not pay dividends: In real markets, many companies
pay some money to their shareholders, as a dividend.

• There are no transaction costs: Again, this is not a realistic assumption. Because
stock brokers charge some money for trading options.

While some of these limitations can be solved by expanding the original model. Take for
example the Black-Scholes with local volatility model (that was considered in this thesis),
which assumes that the volatility is a function of time and underlying asset price, or in-
cluding dividends in the equation. Nevertheless, there are some fundamental issues with
Black-Scholes equation, which can not be addressed easily, and new models with different
assumptions should be derived, so as to capture the real world features of option prices.

One important remedy for above-mentioned problems of Black-Scholes equation is to de-
termine local volatilities, such that the obtained option values fit the real data of the market.
And this method is discussed in the next section.

7.2 Calibration of Local Volatility Function

As it is mentioned before, we would like to follow the method which is proposed by Hanke
and Rösler [HR05], to calibrate the volatility function from the observed underlying option
prices. To this end, this method applies the Dupire equation, then in order to differentiate
the data numerically, cubic splines are used. Finally, the problem is solved with Tikhonov
regularization.

Consider the Black-Scholes equation, if the volatility is explicitly known, then the problem
is well-posed. However, this is not the case in practice. Therefore, we need to regard an
inverse problem to approximate the volatility function σ(S, t) from observed option values
at the fixed time t0 and fixed price S0 of the underlying asset. Nevertheless, as described by
Dupire in [D+94], there is a more straightforward alternative equation, that is discussed in
the following subsection.

7.2.1 Dupire Equation

In this subsection, we follow [Jia05], to illustrate how the Dupire equation is derived.
Assume that the call option value V (S, t;σ,K, T ) satisfies the Black-Scholes equation at

the fixed price S0 and fixed time t0,

∂V

∂t
+

1

2
σ2(S, t)S2∂

2V

∂S2
+ (r − q)S∂V

∂S
− rV = 0 (7.1)

V (S, T ) = max(0, S −K) (7.2)

where 0 < S <∞ and 0 ≤ t < T and q is the dividend which pays to the shareholders.
Also, define G as the second derivative of V with respect to strike, i.e. ∂2V

∂K2 = G(S, t;K,T ).
Then G satisfies,

∂G

∂t
+

1

2
σ2(S, t)S2∂

2G

∂S2
+ (r − q)S∂G

∂S
− rG = 0 (7.3)

G(S, t) = δ(K − S) (7.4)
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7.2 Calibration of Local Volatility Function

where δ is a Dirac function.
As it is proved in [Jia05] in detail, regarding the fact that δ(x) = δ(−x), then G is the
fundamental solution of the 7.3, 7.4. Hence, it is also the fundamental solution to the
adjoint problem of 7.3, 7.4. Thus,

− ∂G

∂T
+

1

2

∂2

∂K2
(σ2(K,T )K2G)− (r − q)∂(KG)

∂K
− rG = 0 (7.5)

G(S, t;K,T ) = δ(K − S) (7.6)

where 0 ≤ K ≤ ∞ and t ≤ T .
Then, substituting ∂2V

∂K2 instead of G, and integrating two times with respect to K in [K,∞],
results in the Dupire equation for European call options,

−∂V
∂T

+
1

2
σ2(K,T )K2 ∂

2V

∂K2
− (r − q)K ∂V

∂K
− qV = 0. (7.7)

Notice that unlike the Black-Scholes equation, that the option value is the function of under-
lying asset price S and time t, in Dupire equation, the option value is the function of strike
K and maturity T . Consequently, by solving this equation just for one time, we evaluate the
option value for all strikes and maturities, whereas, in the case of Black-Scholes equation,
we have to evaluate the option value for each strike and maturity separately.

Finally, solving the equation for σ(K,T ), one obtains,

σ(K,T ) =

(
2
(
∂V
∂T + (r − q)K ∂V

∂K + qV
)

K2 ∂2V
∂K2

) 1
2

(7.8)

where all components of the right-hand side can be evaluated at (t0, S0;T,K) from the given
data in theory. However, in practice, there are some issues that cause this problem to be
ill-posed. First of all, in real markets, there are just a few maturities, and in each maturity
only finite number of strikes are available for traders. Secondly, the real call option values
are usually rising in K and declining in T . Thus, while the positivity of the denominator
is secured, numerator can be negative, and this can lead to the negativity of the whole
fraction, which is clearly banned, due to the square root. Besides that, it might lead to
severe oscillation of the local volatility function.

In fact, our objective for the rest of this chapter is to improve the stability of this approach
by using the techniques described in [HS98], which consists of applying the smooth cubic
spline interpolation for numerical differentiation of discrete data. And, using Tikhonov
regularization to solve equation 7.8.

7.2.2 Differentiation of the Discrete Data

According to Dupire equation, we require to differentiate the discrete data two times with
respect to strike and one time with respect to maturity. Therefore, in order to perform
numerical differentiation of the discrete data with respect to strike K, we apply the Reinsch
algorithm to derive smooth cubic spline. Then, in the case of taking derivative with respect
to maturity T , since there is a data only for a few number of maturities and also the fact
that typically there is a large gap among these maturities, numerical differentiation of the
data may not be accurate. On the other hand, it also implies that the stability is not an
important problem, thus we simply apply difference quotient.
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7 Calibration of Local Volatility

Cubic Spline

In this part, we consider [GS93], to illustrate cubic spline, and derive Reinsch algorithm for
computing cubic splines. First of all, we need some definitions,

Definition 7.2.1. Cubic spline: Assume that the following data is given,

a < K1 < K2 < ... < Kn < b

then the function g is cubic spline if g is a cubic polynomial in each interval

(a,K1), (K1,K2), ..., (Kn, b)

and pieces of the polynomial fit at knots Ki, such that g and its first and second derivatives
are continuous at each Ki.

Definition 7.2.2. Natural cubic spline: A cubic spline that its second and third deriva-
tives at the endpoints are zero.

When g is a natural cubic spline, we use the notation,

g(i) = g(Ki) and γi = g′′(Ki), for i = 1, .., n.

Notice that for a natural cubic spline, according to its definition, γ1 = γn = 0. Also, let
g = (g1, .., gn)T and γ = (γ2, .., γn−1)T . For further analysis of the natural cubic spline, we
require to introduce the matrices Q and R.
If Q is a n × (n − 2) matrix, then its entries qij , where i = 1, ..., n − 1 and j = 2, ..., n − 1,
are given by,

qj−1,j =
1

hj−1
, qj,j = − 1

hj−1
, qj+1,j =

1

hj
for j = 2, ..., n− 1

qi,j = 0 if |i− j|≥ 2

where hi = ti+1 − ti. Also, the (n− 2)× (n− 2) symmetric matrix R with entries rij , where
i, j = 2, ..., n− 1, is given by,

ri,i =
hi−1 + hi

3
, ri,i+1 = ri+1,i =

hi
6
, for i = 2, ..., n− 1

ri,j = 0 if |i− j|≥ 2.

We also define the matrix S = QR−1QT . Then, we have the following theorem,

Theorem 7.2.1. Vectors g and γ satisfy QTg = Rγ, if and only if, g is a natural cubic
spline. If this is the case, then

∫ b
a g
′′(t)2dt = γTRγ = gTSg

Proof. Proof is given in [GS93].

Theorem 7.2.2. For K1 < ... < Kn where n ≥ 2, and values z1, ..., zn, there exists a unique
natural cubic spline g with knots Ki, such that for (i = 1, ..., n),

g(Ki) = zi.
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7.2 Calibration of Local Volatility Function

Proof. Applying Theorem 7.2.1, and the fact that the matrix R is positive definite, leads to
uniqueness of γ, which is the desired condition.

Furthermore, assume that Y1, ..., Yn are the observations. Then, our objective is to calcu-
late and analyze properties of the curve ĝ, that minimizes,

n∑
i=1

{Yi − g(Ki)}2 + α

∫ b

a
{g′′(x)}2dx (7.9)

where α is a smoothing parameter, and g ∈ C1([a, b]).
It is shown in the following theorem that ĝ have to be a natural cubic spline. Also, a

formula for calculating ĝ is presented.

Theorem 7.2.3. Assume that n ≥ 3 and a < K1 < K2 < ... < Kn < b. Also, suppose that
Y1, ..., Yn and α > 0 are given. If ĝ is a natural cubic spline with knots K1,K2 < ...,Kn,
such that

g = (I + αK)−1Y (7.10)

where Y = (Y 1, ..., Yn)T . Then, for each g ∈ C1([a, b]),

n∑
i=1

{Y i− ĝ(Ki)}2 + α

∫ b

a
{ĝ′′(x)}2dx ≤

n∑
i=1

{Yi − g(Ki)}2 + α

∫ b

a
{g′′(x)}2dx (7.11)

where the equality holds, only if ĝ = g.

Proof. First of all, we show that the minimizer of the 7.9, have to be a natural cubic spline.
For doing this, assume that g is any cubic spline with knots Yi, i = 1, ..., n, and ḡ is a
natural cubic spline with the same knots. Then, due to the fact that for each i, we have
ḡ(Yi) = g(Yi), therefore

∑
{Yi − ḡ(Ki)}2 =

∑
{Yi − g(Ki)}2. Considering the optimality

property of natural cubic spline leads to
∫
ḡ′′

2
<
∫
g′′

2
. Finally, since α assumed to be a

positive constant, we obtain the desired result.
Now for the second part of the proof, assume that g is a natural cubic spline with vectors

g and γ, and matrices Q and R (as defined earlier). Our objective is to express 7.9, in terms
of above matrices and vectors. Then not only we can prove the existence and uniqueness
of the minimizer ĝ, but also it provides us with the algorithm to calculate this minimizer.
Therefore, because g = (g1, ..., gn)T , then we have

∑
{Yi−g(Ki)}2 = (Y−g)T (Y−g). In the

case of the penalty term, according to theorem 7.2.1,
∫ b
a g
′′(t)2dt = gTSg. As a consequence,

we can re-express the sum 7.9 as, (Y− g)T (Y− g) + gTSg, and this is equal to,

gT (I + αS)g− 2YTg + YTY. (7.12)

Notice that the matrix I + αS is positive definite (because αS is positive semi-definite),
which cause 7.12, to have a unique minimum. This minimum can be obtained by g =
(I + αS)−1Y.

Combining results of theorem 7.2.2 and 7.2.3, we obtain that the vector g defines a unique
natural cubic spline g, and among all natural cubic splines with knots Ki, (i = 1, ..., n), the
minimum of 7.9 is given uniquely by (I + αS)−1Y.

Therefore, given a set of knots with their corresponding values (observations), we can
apply this formula to obtain a unique spline that fits our observations. However, it is not
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7 Calibration of Local Volatility

efficient to apply 7.10 directly and evaluate the vector g and thus the curve ĝ. Hence, we
describe an algorithm, introduced by Christian Reinsch [Rei67], for finding the smoothing
spline. The idea behind the Reinsch algorithm is to derive a non-singular linear system of
equations for evaluating γi at knots Ki, then using explicit formulas to obtain gi, from γi
and Yi.

Combining 7.10 and the definition S = QR−1QT , results in,

(I + αQR−1QT )g = Y. (7.13)

Thus,
g = Y− αQR−1QTg.

Then, substituting QTg = Rγ, leads to,

g = Y− αQγ.

Now, multiply both sides of the equation by QT , and apply QTg = Rγ, to obtain, QTY −
αQTQγ = Rγ. Hence,

(R+ αQTQ)γ = QTY. (7.14)

Equation 7.14 plays a key role in Reinsch algorithm. Its importance comes from the fact that
the matrix R+αQTQ is a Band matrix (all non-zero elements are gathered in few diagonals)
with 5 bandwidth (number of non-zero diagonals is 5), which reduces the computation costs
of γ significantly. Whereas, it was not the case for the equation 7.13. Besides that, R+αQTQ
is symmetric and positive definite. Therefore, there is a Cholesky decomposition,

R+ αQTQ = LDLT

where L is the lower triangular matrix with Lii = 1, ∀i, and D is a diagonal matrix with
positive elements. This property makes the algorithm even cheaper. Now, we can express
the Reinsch algorithm as follow,

Algorithm 7.1. (Reinsch algorithm)

1. Calculate the vector QTY

2. Find the Cholesky decomposition factors L and D, of the matrix R+ αQTQ

3. Form the system LDLTγ = QTY, and calculate γ

4. Form g = Y− αQγ, and calculate g.

Finally, we would like to derive the formula for g, based on the vectors g and γ, that obtained
by performing the Reinsch algorithm.

For each interval [Ki,Ki+1] where i = 1, ..., n− 1, we define hi = Ki+1 −Ki. Then, as it
is given in [GS93], the formula for g is,

g(K) =
(K −Ki)gi+1 + (Ki+1 −K)gi

hi

− 1

6
(K −Ki)(Ki+1 −K)

((
1 +

K −Ki

hi

)
γi+1 +

(
1 +

Ki+1 −K
hi

)
γi

)
. (7.15)
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In the case of K ≤ K1 and Kn ≤ K, we have,

g(K) = g1 − (K1 −K)g′(K1) for K ≤ K1 (7.16)

g(K) = gn − (K −Kn)g′(Kn) for Kn ≤ K. (7.17)

It only remains to consider the evaluation of the smoothing parameter α. For doing this,
assume that the cubic spline, obtained for maturity Tj , where j = 1, ...,m is denoted by
uj , with second derivative u′′j . Also, we show the observed data in fixed price S0 at fixed
time t0, for maturity Tj and strike Ki, by u(t0, S0;Tj ,Ki). Recall that we have obtained the
formula for computing cubic spline for each maturity, such that fits the observed data. In
other words, for each maturity Tj , cubic spline uj , minimize the following sum,

n∑
i=1

|uj(Ki)− u(t0, S0;Tj ,Ki)|2+α||u′′j (Ki)||2L2 . (7.18)

There are two fundamental strategy for determining α. The first one, which is described and
analyzed in [HS01], is called ”discrepancy principle”, and consists of choosing the parameter
α, in a way that the data uncertainty times the number of data samples equal to the sum
7.18. The second approach, which is used by Hanke and Rösler in [HR05], and is described in
[EH96], is called ”L-curve criterion”. The idea is to evaluate the sum 7.18, at each maturity
Tj for a considerable number of regularization parameter α. Then, compute the norms,

ρ(α) =
n∑
i=1

|uj,α(Ki)− u(t0, S0;Tj ,Ki)|2, ν(α) = ||u′′j,α(Ki)||2L2

and plot the curve (ρ(α), ν(α)) in doubly logarithmic scale. This curve normally displays an
L-shaped corner, where the regularization parameters relevant to the points just right of the
corner are proved to be a proper choice.

Meanwhile, since g is a polynomial, we can easily compute its first and second derivative
analytically. As a consequence, we have all the required ingredients for differentiating the
discrete data numerically with respect to strike. The next step is to differentiate the available
data with respect to maturity.

Central Difference Quotient

As it is mentioned earlier, we would like to apply the difference quotient to perform the
differentiation with respect to maturity T . Based on the fact that the given maturities
are typically not equidistant, we use the following centered difference quotient for inner
maturities T2, ..., Tm−1,

uT (Ki, Tj) ≈
1

τj + τj+1

(
τj
τj+1

uj+1(Ki) +
(τj+1

τj
− τj
τj+1

)
uj(Ki)−

τj+1

τj
uj−1(Ki)

)
(7.19)

where τj = Tj − Tj−1 for j = 2, ...,m− 1.
In the case of maturities T1 and Tm, we apply the forward and backward difference quotient
respectively.

Heretofore, we have applied methods to compute uK , uKK and uT . The next step is to
use these values to solve equation 7.8 with two different approach, which will be discussed
in the next subsection.
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7 Calibration of Local Volatility

7.2.3 Solving For the Volatility Function

In order to evaluate the volatility function, we need further assumptions. First of all, if we
define K = miniKi and K̄ = maxiKi, then for simplicity, assume that K and K̄ are the
same for each maturity. Also, suppose that ∆ is a rectangular equidistant grid with points,
K = K1 < K2 < ... < Kn = K̄, in x-direction, and T0 < T1 < ... < Tm in y-direction, where
T0 = t0. Then, we define,

zij = σ2(Ti,Kj) where (Ti,Kj) ∈ ∆.

Now, if we denote the numerator and denominator of z by b and d, respectively. Then,
according to equation 7.8, we have,

b = 2
(
VT + (r − q)KVK + qV

)
d = K2VKK

where we set bij = 0 for i = 0. The next step is to apply standard lexicographic ordering,
to convert the matrices z,b, and d, into one-dimensional vectors z,b and d. Then, we define
the diagonal matrix D, by applying elements of vector d. Therefore, our objective is to solve
the system,

Dz ≈ b. (7.20)

Nevertheless, due to the fact that we use natural cubic splines for the interpolation, the
values of the matrix d disappear in K and K̄, therefore some elements of the matrix D
are insignificant. Moreover, system 7.20 may have a negative solution, because while by
definition D is always non-negative, the vector b can change sign. Hence, this system is
ill-conditioned and some regularization is required.

Tikhonov Regularization

According to [GNC14], one of the widely used regularization methods to address ill-posed
inverse problems is Tikhonov regularization. Its aim is to minimize the particular measure
of the solution, such as size of the solution or norm of the first and second derivative. We
apply Tikhonov regularization to minimize the following expression,

||Dz− b||22+λ||Lz||22 (7.21)

where λ is a positive regularization parameter, and L is an operator on z.

An important issue is to define the operator L. The most obvious option is to choose iden-
tity matrix L = I, then it is called the zeroth order Tikhonov regularization. However, since
the identity matrix can not secure non-negativity of the solution z, it is not an appropriate
choice for our problem. Because minimizing 7.21, is equivalent to solve the following linear
system,

(D2 + αLTL)z = Dz (7.22)

and choosing L = I, leads to a diagonal system matrix with positive entries, while the
right-hand side, since b can change signs, may not be non-negative in general.

Most papers which address the calibration of local volatility surface, apply the first order
Tikhonov regularization. It consists of defining the operator L that approximates the first
derivative of the volatility function. Following the paper [HR05], we apply finite difference
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7.2 Calibration of Local Volatility Function

approximation, so as to define the discrete gradient operator L. Therefore, assume that the
matrices LK ∈ Rn−1,n and LT ∈ Rm,m+1, define by,

LK =


−1 1

−1 1
. . .

. . .

−1 1

 , LT =


− 1
τ1

1
τ1
− 1
τ2

1
τ2
. . .

. . .

− 1
τm

1
τm


Then, L is chosen as,

L =

[
Im+1 ⊗ LK
LT ⊗ In

]
(7.23)

where ⊗ denotes the Kronecker product of two matrices.
One of the benefits of this choice for the operator L is a coupling of the individual values

of σ2(Ti,Kj) in z. Moreover, it can also be shown that with sufficiently large α, this choice
of L, implies the positive solution z. And this is proved in the following theorem.

Theorem 7.2.4. Consider the given definition of the vectors b and d, and suppose that∑
bijdij > 0. If zα be the solution of the equation 7.22, and α→∞, then we have,

zα →
∑
bijdij∑
d2
ij

1

where 1 is the vector in R(m+1)n with all entries equal to one.

Proof. According to generalized singular value decomposition [G+96], for matrices L and D,
we have,

L = UCX−1, D = WSX (7.24)

where all matrices belong to R(m+ 1)n× (m+ 1)n, and C and S are diagonal matrices with
non-negative elements. U and W are orthogonal matrices, and X is non-singular matrix.
Suppose that the matrices W and X, are consist of vectors w1, ..., w(m+1)n and x1, ..., x(m+1)n,
respectively. Likewise, assume that the diagonal elements of the matrices C and S are given
by, c1, ..., c(m+1)n and s1, ..., s(m+1)n, respectively. If cN be the diagonal element of C with
the value equal to zero (because rank of L and C are equal, exactly one ci is zero), then we
can choose x(m+1)n = 1, which leads to,

d = D1 = Dx(m+1)n = s(m+1)nw(m+1)n and wT(m+1)nb =
dTb

s(m+1)n
. (7.25)

Notice that ||w(m+1)n||22= 1, therefore,

s2
(m+1)n = ||d||22. (7.26)

Now combining 7.22 and 7.24, and regarding the fact that the matrix D is diagonal, and
thus DT = D, results in,

zα = (D2 + αLTL)−1Db = X(S2 + αC2)−1XTX−TSW Tb =

(m+1)n∑
i=1

wTi b
si

s2
i + αc2

i

xi.
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7 Calibration of Local Volatility

Therefore,

lim
α→∞

zα =
wT(m+1)nb

s(m+1)n
1.

Combining this with 7.25 and 7.26, lead to our desired result and terminate the proof.

It should be noted that the asymptotic value of zα, (z), minimize the following least square
fit, corresponding to the Dupire equation,

||b− zd||2.

It is also possible to generate another approach for evaluating volatility surface. It consists of
rewriting the Dupire equation 7.8, as a linear system for multiplicative inverse of zij , (z−1),

Bz−1 ≈ d

where similar to D, the matrix B is defined as the diagonal matrix with values of vector
b on its diagonal. Again, this problem is ill-posed and similar to the first approach, by
applying the same matrix L, and sufficiently large regularization parameter β, we can obtain
the following regularization problem for evaluating z−1,

(B2 + βLTL)z−1 = Bd. (7.27)

Moreover, by applying theorem 7.2.4, with this approach, we obtain that there exists a
volatility 1

z , that minimizes the following least square fit, where the regularization parameter
β is sufficiently large.

||d− 1

z
b||2.

7.3 Numerical Results

Our objective in this section, is to apply the observed real data of the market to the ap-
proaches 7.22 and 7.27, in order to evaluate the volatility function. For doing this, we obtain
the data of Russell 2000 index on August 1, 2018 from the ”Yahoo Finance” website [Fin18].
The Russell 2000 index is obtained from the Russell 3000 index, which can be regarded as
a benchmark for the whole US stock market. Russell 2000 index consider the lower 2000
stocks in the Russell 3000 index, and can be regarded as a small capitalization of stock
market index. We show the available data for the Russell 2000 index from August 1, 2018,
in the figure 7.1.
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7.3 Numerical Results

Figure 7.1: Available data for the Russell 2000 index from August 1, 2018

In the case of smooth interpolation of the data, according to our results, the standard pa-
rameter choice criterions, such as ”L-curve criterion”, are not useful for our data. Therefore,
we assign the regularization parameter to cubic splines that both leads to the smooth inter-
polation, and secures the positiveness of the obtained interpolation and its second derivative.
Figure 7.2 illustrates the resulting smooth interpolations.

Figure 7.2: Smooth interpolation of the Russell 2000 index data
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7 Calibration of Local Volatility

Although, as we mentioned earlier, there is no number in the market as a risk-free rate,
the 4 week treasury bill rates are typically considered by authors as a risk-free interest rate.
According to [otT18], the 4 week treasury bill rates in August 1, 2018 is equal to 0.019. Thus,
we use this number in our calculations. Again, we choose the regularization parameter such
that the obtained volatility surface becomes smooth. Using MATLAB [Mat14], the obtained
volatility surfaces of our market data applying 7.22 and 7.27 are shown in figure 7.3 and 7.4,
respectively. According to our results, both approaches roughly capture the volatility smile.
While the second approach 7.27 gives bigger volatilities, the graph of the first approach 7.22,
appears to be, qualitatively, more correct.

Figure 7.3: Volatility surface using 7.22

Figure 7.4: Volatility surface using 7.27
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8 Conclusion

The aim of this thesis was to analyze and compute the Black-Scholes equation, which is a sec-
ond order parabolic partial differential equation, to evaluate the option contracts. Through-
out the thesis, we focused only on the European-type options. Although the exact solution
is known for European options, numerical approximation of the Black-Scholes equation is
vital for pricing more complex options, such as American options. In addition, according
to empirical studies the original Black-Scholes equation fails to capture the real world fea-
tures of option prices. In order to cope with this issue, it is necessary to extend the original
Black-Scholes equation. Therefore, while the original Black-Scholes equation assume that
the interest rate and volatility are constant, we regarded the extended version that assumes
the interest rate is a function of time and volatility is a function of time and underlying asset
price.

In order to develop the numerical solution of the Black-Scholes equation with local volatil-
ity, we followed the method which is mentioned in the book by Achdou and Pironneau
[AP05]. This finite element method consists of obtaining the semi-discrete problem by dis-
cretizing the problem in time variable and applying the Crank-Nicolson scheme. Then, the
fully discrete problem is derived by applying the Lagrange finite element and discretizing the
problem in price variable. On the other hand, there is an analytic solution for the original
Black-Scholes equation. Therefore, we assigned constant interest rate and volatility in our
finite element method, and compared the results of two approaches together. Based on our
experiments, the error around the strike and maturity is, by far, greater than other areas.

In the case of a posteriori error analysis Bergam, Bernardi and Mghazli [BBM05], regard
the parabolic partial differential equations that are discretized with respect to time and space
variables by an implicit Euler scheme and finite element respectively. Their main idea is to
uncouple the time and space errors as much as possible. Therefore, they develop two families
of error indicators, where the first one is global in space variable and local in time variable and
the second family is local in both time and spatial variables. Achdou and Pironneau [AP05],
apply this approach to develop a strategy to perform the adaptive mesh refinement for the
Black-Scholes equation with local volatility. We followed the same method for adaptive mesh
refinement where the Black-Scholes equation with local volatility is discretized in time by
Crank-Nicolson scheme. Therefore, we evaluated two error indicators and show that these
obtained error indicators agree with the actual error. By performing the adaptive mesh
refinement algorithm, we obtain that the mesh is refined around the strike and maturity
more than other areas of domain, which is according to our expectations.

To deal with shortcomings of the Black-Scholes equation in real-world applications, we
followed the approach of Hanke and Rösler [HR05], which consists of calibrating the local
volatility function from observed option prices in the market. First of all, they smoothen-
ing the observed data by cubic splines. Then, by applying the Dupire equation, the local
volatility function is obtained by numerical differentiation. However, due to the fact that
the obtained system is underdetermined and ill-posed, before solving the system, first order
Tikhonov regularization is applied.



8 Conclusion

We expand the method by including the dividend in the calculations, in order to adjust
the method to the real-world features of options. Then, we test the method with the real
world data of Russell 2000 index on 1st of August 2018. According to our results, it seems
that the method is sensitive to the initial data. In the theoretical point of view, the option
prices are monotonically decreasing with respect to strike and are monotonically increasing
with respect to maturity. However, this is not the case in real-world data, where some noises
can be seen in the data. This phenomenon can lead to negative result, which is unacceptable.
Therefore, excluding the noises are needed, which makes the underdetermined and ill-posed
nature of the problem even worse. On the other hand, this method is fast and straightforward
and appears to be qualitatively correct.
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Appendix

Proof of Proposition 1.
Regard the weak formulation 6.7, and replace u∆t by u and, add and subtract the expression
atn(u∆t(t), v) + atn(un, v). Then,

(∂u∆t

∂t
(t), v

)
+ at(u∆t(t), v) =(un − un−1

∆tn
, v
)

+ (at(u∆t(t), v)− atn(u∆t(t), v)) + atn(u∆t(t)− un, v) + atn(un, v) =(
(at(u∆t(t), v)− (atn(u∆t(t), v)

)
+ (atn(u∆t(t)− un, v)

for each t ∈ (tn−1, tn] and v ∈ V0.
Now, subtracting from the weak formulation 6.7, results in,

(∂(u− u∆t)

∂t
(t), v

)
+ atn((u− u∆t)(t), v) =

− (at(u∆t(t), v)− atn(u∆t(t)− un, v))− atn(u∆t(t), v).

Now, apply the change of variable, e2λtv(t) = (u− u∆t)(t). Then, integrating, summing and
mathematical simplification lead to,

[[u− u∆t]]
2 ≤

− 2
n∑

m=1

∫ tm

tm−1

(
aτ (u∆t(τ), v)− atm(u∆t(τ), v)

)
dτ − 2

n∑
m=1

∫ tm

tm−1

atm(u∆t(τ)− um, v)dτ.

As a result, we obtained the inequality with two terms in the right hand side , and our
objective is to simplify each term.

In the case of first expression, applying the definition of bilinear form 6.5, previous as-
sumptions and mathematical simplifications, lead to,

∣∣∣ ∫ tm

tm−1

(
aτ (u∆t(τ), v)− atm(u∆t(τ), v)

)
dτ
∣∣∣ ≤

∆tm
2L1 + L2 + L3

2

σ2

∫ tm

tm−1

σ2

2
|u∆t|V |u− u∆t|V e−2λτdτ ≤

∆tm
2L1 + L2 + L3

2

σ2

(∫ tm

tm−1

σ2

2
|u∆t|2V e−2λτdτ

) 1
2
(∫ tm

tm−1

σ2

2
|u− u∆t|2V e−2λτdτ

) 1
2
.

The next step is to take the sum over m, in order to obtain the result for all time intervals.
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Therefore,

2
∣∣∣ n∑
m=1

∫ tm

tm−1

(
aτ (u∆t(τ), v)− atm(u∆t(τ), v)

)
dτ
∣∣∣ ≤

L

σ2
c(u0)∆t

( n∑
m=1

∫ tm

tm−1

σ2

2
|u− u∆t|2V e−2λτdτ

) 1
2

L

σ2
c(u0)∆t[[u− u∆t]](tn).

It remains to consider the second term, applying the equation 6.8 and some mathematical
operations, bring about,∣∣∣ ∫ tm

tm−1

atm(u∆t(τ)− um, v)dτ
∣∣∣ ≤

µ
(∫ tm

tm−1

|u∆t(τ)− um|2V e−2λτdτ
) 1

2
(∫ tm

tm−1

|v|2V e−2λτdτ
) 1

2 ≤
√

2µ

σ

(∫ tm

tm−1

|u∆t(τ)− um|2V e−2λτdτ
) 1

2
(∫ tm

tm−1

σ2

2
|u− u∆t|2V e−2λτdτ

) 1
2
.

On the other hand,(∫ tm

tm−1

|u∆t(τ)− um|2V e−2λτdτ
) 1

2 ≤(∆tm
3

) 1
2
e−λtm−1 |um−1 − um|V≤(

∆tme
−2λtm−1

(
|um−1
h − umh |2V +|um−1 − um−1

h |2V +|um − umh |2V
)) 1

2

where in the first inequality, we used the fact that u∆t(τ)− um = tm−τ
∆tm

(um−1 − um). Then,

we add and subtract um−1
h and umh to obtain the last inequality.

Then, we can bound the last term by,

2(1 + ρ∆t)
n∑

m=1

∆tm

m−1∏
i=1

(1− 2λ∆ti)|um − umh |2V≤
32

σ2
(1 + ρ∆t)[[u∆t − uh,∆t]]2(tn).

Notice that we applied 6.20, and use the inequality e−2λtn ≤ 2(
∏n
i=1(1− 2λ∆ti)), that was

obtained during prove of lemma 6.1.1.
Finally,

∣∣∣2 n∑
m=1

∫ tm

tm−1

atm(u∆t(τ)− um, v)dτ
∣∣∣ ≤

4µ

σ2

(
16(1 + ρ∆t)[[u∆t − uh,∆t]]2(tn) +

n∑
m=1

∆tme
−2λtm−1

σ2

2
|umh − um−1

h |2V
)1

2
[[u− u∆t]](tn).

(.1)
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Proof of Proposition 2. Assume that v ∈ V0 and vh ∈ Vnh, then,

(un − unh, v) + ∆tnatn(un − unh, v) =

(un − unh, vh) + (un − unh, v − vh) + ∆tnatn(un − unh, v − vh).

Now, suppose that we denote the minimum and maximum price of each element ω by ψ1

and ψ2, respectively. Then, applying integration by parts to the bilinear form terms lead to,

(un − unh, v − vh) + ∆tnatn(un − unh, v − vh) =

(un−1 − un−1
h , v − vh)− (unh − un−1

h , v − vh)+

∆tn
∑
ω∈Tnh

(∫
ω

(
rS
∂unh
∂S
− runh

)
(v − vh)dS − 1

4

2∑
i=1

σ2(ψi, tn)ψ2
i

[∂unh
∂S

]
(ψi)(v − vh)(ψi)

)
.

For the next step, assume that vv ∈ Vh are chosen in a way that at the mesh points, except
for Si = 0, vh(Si) = v(Si). Also in the case of vh(0), it is satisfied,

∫ S1

0 (v − vh) = 0. Then,

||v − vh||L2(ω)≤
hω
Smax

∣∣∣∣∣∣S ∂v
∂S

∣∣∣∣∣∣
L2(ω)

and ||S(v − vh)||L∞(ω)≤ Ch
1
2
ω

∣∣∣∣∣∣S ∂v
∂S

∣∣∣∣∣∣
L2(ω)

.

Hence,

−1

4

2∑
i=1

σ2(ψi, tn)ψ2
i

[∂unh
∂S

]
(ψi)(v − vh)(ψi) = 0.

Now, we can obtain the following bound,∣∣∣∣∣−
∫
ω

unh − u
n−1
h

∆tn
(v − vh)dS +

∫
ω

(
rS
∂unh
∂S
− runh

)
(v − vh)dS

− 1

4

2∑
i=1

σ2(ψi, tn)ψ2
i

[∂unh
∂S

]
(ψi)(v − vh)(ψi)

∣∣∣∣∣ ≤ Cηn,ω∣∣∣∣∣∣S ∂v∂S ∣∣∣∣∣∣L2(ω)
.

Regard the first expression of the proof, and apply the change of variable, v = (un − unh).
Thus,

(1− 2λ∆tn)||un − unh||2+
1

4
∆tnσ

2|un − unh|2V≤ ||un−1 − un−1
h ||2+

4C2

σ2
∆tn

∑
ω∈Tnh

η2
n,ω.

Notice that our objective is to bound the discrete norm [[]]n, thus we would like to produce
the terms of this norm on the left hand side of this inequality. As a result, multiply both
sides of the inequality by

∏n−1
i=1 (1− 2λ∆ti), and sum up over n. Therefore,

[[(um − umh )]]2n ≤
c

σ2

n∑
m=1

∆tm

m−1∏
i=1

(1− 2λ∆ti)
∑

ω∈Tmh

η2
n,ω

where c is a constant.
Finally, applying the result of lemma 6.1.1, give us the following bound, which terminates
the proof,

[[(u∆t − uh,∆t)]]2(tn) ≤ c

σ2
max(2, 1 + ρ∆t)

n∑
m=1

∆tm

m−1∏
i=1

(1− 2λ∆ti)
∑

ω∈Tmh

η2
n,ω.
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Appendix

Proof of Proposition 3. In order to prove the bound for ηn, first of all apply the triangle
inequality to obtain,

ηn ≤
√

∆tne
−λtn−1

σ√
2
|un − un−1|V +√

∆tne
−λtn−1

σ√
2
|un − unh|V +

√
∆tne

−λtn−1
σ√
2
|un−1 − un−1

h |V .

Our goal in this proof is to estimate each terms of the above bound separately. In the case

of the second and third expressions, apply the inequality e−2λtn ≤ 2
(∏n

i=1(1 − 2λ∆ti)
)

,

which mentioned in the proof of lemma 6.1.1, and the definition of regularity parameter
6.13, respectively, to obtain following results,√

∆tne
−λtn−1

σ√
2
|un − unh|V≤

√
2[[un − unh]]

and √
∆tne

−λtn−1
σ√
2
|un−1 − un−1

h |V≤
√

2ρ∆t[[u
n−1 − un−1

h ]].

However, obtaining the estimate for the first term is much more difficult. First of all, observe
that by defining I, II, III and IV as,

I = 4e−2λtn−1

∫ tn

tn−1

∂(u− u∆t)

∂t
(τ)(un − un−1)dτ

II = 4e−2λtn−1

∫ tn

tn−1

aτ (u− u∆t(τ), un − un−1)dτ

III = 4e−2λtn−1

∫ tn

tn−1

(
aτ (u∆t(τ), un − un−1)− atn(u∆t(τ), un − un−1)

)
dτ

IV = 2λ∆tne
−2λtn−1 ||un − un−1||2.

Then we have, √
∆tne

−λtn−1
σ√
2
|un − un−1|V≤ I + II + III + IV.

Hence, we need to obtain the estimate for each term separately.
For the first term, simple mathematical operations lead to,

|I|≤ 4
√

2∆tn
σ

e−2λtn−1

∣∣∣∣∣∣∂(u− u∆t)

∂t

∣∣∣∣∣∣
L2(tn−1,tn;V ′0)

σ√
2
|un − un−1|V

=
4
√

2

σ
e−λtn−1

∣∣∣∣∣∣∂(u− u∆t)

∂t

∣∣∣∣∣∣
L2(tn−1,tn;V ′0)

ηn.

Likewise, we obtain the following estimate for the second term,

|II|≤ 4
√

2µ∆tn
σ

e−2λtn−1 ||u− u∆t||L2(tn−1,tn;V0)
σ√
2
|un − un−1|V

=
4
√

2µ

σ
e−λtn−1 ||u− u∆t||L2(tn−1,tn;V0)ηn.

In the case of third term, we require to consider two different condition. Following the
procedure in the proof of proposition 1, and applying previous assumptions and definitions,
we obtain
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• If i = 1,

|III|≤
√

2L

σ
∆t1||u∆t||L2(0,t1;V0)η1 ≤

L

σ
(∆t1)

3
2 (|u1|2V +|u0|2V )

1
2 η1

≤ 2
√

2L

σ2
∆t1

(
[[(um)]]1 +

σ√
2

√
∆t1|u0|V

)
η1

≤ 2
√

2L

σ2
∆t1

(
||u0||+ σ√

2

√
∆t1|u0|V

)
η1.

• If i > 1,

|III|≤
√

2L

σ
e−λtn−1∆tn||u∆t||L2(tn−1,tn;V0)ηn

2L

σ

( n−1∏
i=1

(1− 2λ∆ti)
) 1

2
∆tn||u∆t||L2(tn−1,tn;V0)ηn

√
2L

σ
(max(1, ρ∆t))

1
2 ∆tn

(
∆tn

n−1∏
i=1

(1− 2λ∆ti)|un|2V +∆tn−1

n−2∏
i=1

(1− 2λ∆ti)|un−1|2V
) 1

2
ηn

2L

σ2
(max(1, ρ∆t))

1
2 ∆tn[[(um)]]nηn ≤

2L

σ2
(max(1, ρ∆t))

1
2 ∆tn||u0||ηn.

It remains to obtain the estimate for the last term. We have,

IV = 2λe−2λtn−1

(∫ tn

tn−1

(un−un−1−∆tn
∂u

∂t
)(un−un−1)dτ+

∫ tn

tn−1

∆tn
∂u

∂t
(un−un−1)dτ

)
.

• For the first term

2λe−2λtn−1

∣∣∣ ∫ tn

tn−1

(un − un−1 −∆tn
∂u

∂t
)(un − un−1)dτ

∣∣∣
= 2λe−2λtn−1∆tn

∣∣∣ ∫ tn

tn−1

(∂u∆t

∂t
− ∂u

∂t

)
(τ)(un − un−1)dτ

∣∣∣
≤ 2
√

2α

σ
e−λtn−1

∣∣∣∣∣∣∂(u− u∆t)

∂t

∣∣∣∣∣∣
L2(tn−1,tn;V ′0)

ηn.

• For the second term,

2λe−2λtn−1

∣∣∣ ∫ tn

tn−1

∆tn
∂u

∂t
(un − un−1)dτ

∣∣∣
≤ 2
√

2λ

σ
∆tne

λ∆tn ||e−λt∂u
∂t
||L2(tn−1,tn;V ′0)≤

4µλ

σ2
∆tne

α||u0||ηn.

Similar to previous cases and applying 6.12,we obtain the estimate for these two terms. And
this estimates finish the proof.
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Proof of Proposition 6.2.2.
Recall that we obtained the following expression in proof of proposition 2,

(un − unh, v − vh) + ∆tnatn(un − unh, v − vh) =

(un−1 − un−1
h , v − vh)− (unh − un−1

h , v − vh)+

∆tn
∑
ω∈Tnh

(∫
ω

(
rS
∂unh
∂S
− runh

)
(v − vh)dS − 1

4

2∑
i=1

σ2(ψi, tn)ψ2
i

[∂unh
∂S

]
(ψi)(v − vh)(ψi)

)
.

Suppose that ψω is a bubble function on ω, then, apply the change of variable vh = 0. Also,

v =
(unh − un−1

h

∆tn
− rS

∂unh
∂S

+ runh

)
ψω on ω, v = 0 elsewhere.

Then,

||v||2L2(ω)=
∣∣∣∣∣∣(unh − un−1

h

∆tn
− rS

∂unh
∂S

+ runh

)
ψ

1
2
ω

∣∣∣∣∣∣2
L2(ω)

=
1

∆tn
(un−1 − un−1

h , v)− 1

∆tn
(un − unh, v) + atn(unh − un, v).

Now, for all w that belong to the space of first order polynomials, following inverse inequal-
ities are derived,

||w||L2(ω)≤ c1||wψ
1
2
ω ||L2(ω) and

∣∣∣∣∣∣S∂w
∂S

∣∣∣∣∣∣
L2(ω)

≤ c2
Smax(ω)

hω
||w||L2(ω).

Hence, by combining these results we obtain,∣∣∣∣∣∣(unh − un−1
h

∆tn
− rS

∂unh
∂S

+ runh

)∣∣∣∣∣∣2
L2(ω)

≤ cSmax(ω)

hω

(∣∣∣∣∣∣un−1 − un−1
h − un + unh
∆tn

∣∣∣∣∣∣
V ′0(ω)

+ µ
∣∣∣∣∣∣S∂(un − unh)

∂S

∣∣∣∣∣∣
L2(ω)

)
...

...
∣∣∣∣∣∣(unh − un−1

h

∆tn
− rS

∂unh
∂S

+ runh

)∣∣∣∣∣∣
L2(ω)

.

Finally, eliminating common expressions from both sides, leads us to our desired result,

hω
Smax(ω)

∣∣∣∣∣∣(unh − un−1
h

∆tn
− rS

∂unh
∂S

+ runh

)∣∣∣∣∣∣
L2(ω)

≤

(∣∣∣∣∣∣un−1 − un−1
h − un + unh
∆tn

∣∣∣∣∣∣
V ′0(ω)

+ µ
∣∣∣∣∣∣S∂(un − unh)

∂S

∣∣∣∣∣∣
L2(ω)

)
.
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