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Why Grasping?
• Fundamental component of robot 

manipulation

• Many manipulation problems 
involve grasping

• Wide range of applications
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Why Grasping is Challenging?

• High-dimensional search space

• Approach the object with no-
collision

• Robust Grasps
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Top-down vs. 6 DoF Grasps
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Top-down setting:

+ 4 DoF grasps

+ Simpler to learn

- Not robust in general
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Static-Camera vs. Wrist-Camera
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• Most of models are developed for 
static-camera setting

• However, static-camera is not 
realistic for many mobile 
manipulation settings
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Problem Statement
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• Grasping for Mobile Manipulation 
Robots

• The most challenging, but realistic 
scenario:
• 6 DoF grasps
• Only a wrist camera
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Contributions
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• Design a grasping setup in Issac Sim

• Evaluate the performance of different 
methods

• Ablation study on the action space
and sequence learning
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• Model-based Grasping:

• Classic Approach

• Determine grasps based on: 
contact type, contact model, and 
grasp wrench space

• Limitation:

• Based on unrealistic and non-
generalizable assumptions

• Learning-based Grasping:

• Modern Approach

• Leverage data to decrease reliance 
on assumptions about object’s 
physical properties

• Utilize computer vision, imitation 
learning, reinforcement learning, 
etc.
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Model-based vs. Learning-based Grasping
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• Grasp-pose Estimation:
• Based on Computer Vision 

techniques

• Find the static grasp synthesis in 
the robot’s initial pose

• Limitation:

• Reactive Scenes 

• Accuracy in mobile manipulation 
setting
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Learning-based Models

• Policy Learning:

• Imitation Learning, Reinforcement 
Learning

• The model decides at each step of 
the trajectory 

• Idea: Dynamic selection of grasp 
points might improves performance 
over initial static selection



Baseline: Contact-GraspNet
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• Novelty: Obtain non top-down grasps 
in 4 DoF formulation

• Static selection of grasp synthesis

• Treat 3D points of the recorded point-
cloud as potential grasp contacts

• Mask collected point-cloud to reduce 
number of points 

• To propose the rotation and grasp 
width for refined 3D points

[2]
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Behavior Cloning
• Goal: To find a policy that 

imitates the expert policy by 
leveraging set of demonstrations

• Main Limitation: Distribution 
mismatch in states under the 
expert policy and the learned 
policy
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Behavior Cloning with Feedback
• Pre-train the model using vanilla 

behavior cloning

• Aggregating dataset, while learned 
policy is exploring

• Ground-truth actions, act as feedback 
for the learned policy

• Expected to be more robust
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Action space Candidates
● Euler Angle pose: (3D position, 3D orientation)

+ Intuitive, simple
- Gimbal lock, numerical instability

● Transformation matrix (SE3)

+ Numerically stable
- Higher dimension (12, instead of 6)

● Twist: (3D position, 3D orientation)

+ Numerically stable, low dimensional
- Sensitive to “dt”
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• State Space:

• RGB-D images
• Joint positions

• Expert Policy:

• ACRONYM dataset 
• Custom controller, based on 

inverse Kinematics 
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Other Components

• Sequence Learning:

• The entire trajectory:

+ Uniform LSTM mode for 
training and validation

- Difficulty for batch learning
- High memory costs

• Subset of trajectory:

+ Simple batch-learning
- Inconsistency in LSTM modes 
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Network Architecture

Components:

• ResNet Backbone: Process 
images to determine state

• Joint State: Additional source for 
determining state

• LSTM: To include history
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Evaluations

• Ablation Studies:

• Action Spaces

• Sequence Learning

• Metrics:
• Success Rate: Rate of successful 

grasps

• Progress Ratio: Progress ratio 
towards grasp pose

• Scenarios:

• 1-object scenario: Picking a 
bowl in random places

• 10-object scenario: Picking 10 
different objects in random 
places
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Ablation experiments: Action Spaces

Success ratioProgress towards 
grasp pose

0.00.12Euler angle

0.00.82Rotation 
matrix

0.810.98Twist

1-Object Experiment
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Ablation experiments: Sequence Learning

Success ratioProgress towards 
grasp pose

0.00.62Entire 
trajectory(non-
padded)

0.520.94Entire 
trajectory(pad
ded)

0.810.98Subset of 
trajectory (25 
steps)

1-Object Experiment
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Results

Success ratioProgress towards 
grasp pose

0.00.81Contact 
GraspNet

0.810.98Vanilla 
Behavior 
Cloning

0.900.99Interactive 
Behavior 
Cloning

1-Object Experiment



Limitation
10-Object scenario: 

• Prolonged training period of 250,000 
steps and the collection of over 3000 
trajectories (approximately 6 days of 
training)

• The policy network learned to 
approach the object, but did not 
achieve successful grasping. 
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Conclusion and Future Work

Conclusion:
• Realistic scenario design for mobile 

manipulation robot grasping

• Grasp-pose estimation baseline 
underperformed

• Interactive behavior cloning outperformed 
in single object grasping

• In more complex tasks, successful 
grasping was unachievable in reasonable 
time
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Future work:
● Adjust the training process to enhance 

efficiency  

● Develop a Hybrid model of grasp pose 
estimation and policy learning method 
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