universität freiburg

Policy Learning for Real-time Generative Grasp Synthesis

Sassan Mokhtar

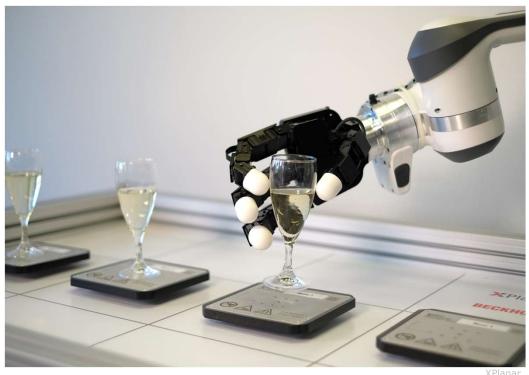
Robot Learning Lab

04 August 2023

Why Grasping?

- Fundamental component of robot manipulation
- Many manipulation problems involve grasping
- Wide range of applications

Why Grasping is Challenging?



- High-dimensional search space
- Approach the object with nocollision
- Robust Grasps

Top-down vs. 6 DoF Grasps

Dexterous Hand

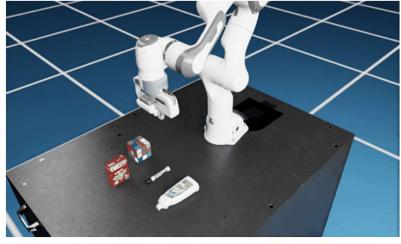
6-DoF Grasp

Parallel Hand

Top-down setting:

- + 4 DoF grasps
- + Simpler to learn
- Not robust in general

Static-Camera vs. Wrist-Camera



- Most of models are developed for static-camera setting
- However, static-camera is not realistic for many mobile manipulation settings

Problem Statement

- Grasping for Mobile Manipulation Robots
- The most challenging, but realistic scenario:
 - 6 DoF grasps
 - Only a wrist camera

Contributions

- Design a grasping setup in Issac Sim
- Evaluate the performance of different methods
- Ablation study on the action space and sequence learning

Model-based vs. Learning-based Grasping

Model-based Grasping:

- Classic Approach
- Determine grasps based on: contact type, contact model, and grasp wrench space

Limitation:

 Based on unrealistic and nongeneralizable assumptions

Learning-based Grasping:

- Modern Approach
- Leverage data to decrease reliance on assumptions about object's physical properties
- Utilize computer vision, imitation learning, reinforcement learning, etc.

Learning-based Models

Grasp-pose Estimation:

- Based on Computer Vision techniques
- Find the static grasp synthesis in the robot's initial pose

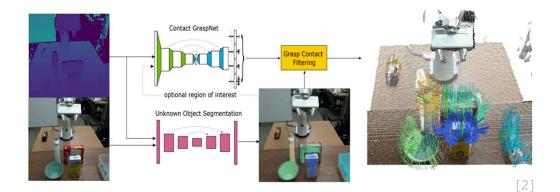
Limitation:

- Reactive Scenes
- Accuracy in mobile manipulation setting

Policy Learning:

- Imitation Learning, Reinforcement Learning
- The model decides at each step of the trajectory
- Idea: Dynamic selection of grasp points might improves performance over initial static selection

Baseline: Contact-GraspNet



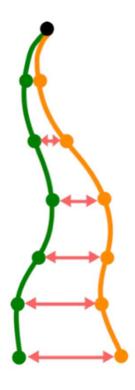
 Novelty: Obtain non top-down grasps in 4 DoF formulation

- Static selection of grasp synthesis
- Treat 3D points of the recorded pointcloud as potential grasp contacts
- Mask collected point-cloud to reduce number of points
- To propose the rotation and grasp width for refined 3D points

Behavior Cloning

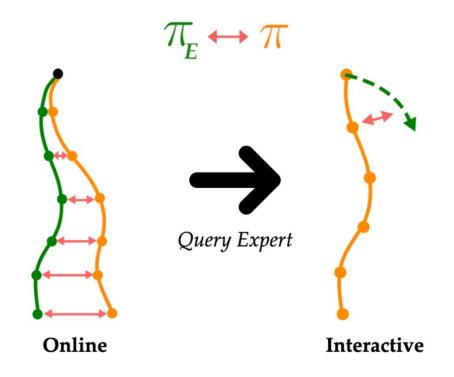
Expert Policy: π_E

Learned Policy: π



- Goal: To find a policy that imitates the expert policy by leveraging set of demonstrations
- Main Limitation: Distribution mismatch in states under the expert policy and the learned policy

Behavior Cloning with Feedback



- Pre-train the model using vanilla behavior cloning
- Aggregating dataset, while learned policy is exploring
- Ground-truth actions, act as feedback for the learned policy
- Expected to be more robust

Action space Candidates

- Euler Angle pose: (3D position, 3D orientation)
 - + Intuitive, simple
 - Gimbal lock, numerical instability
- Transformation matrix (SE3)
 - Numerically stable
 - Higher dimension (12, instead of 6)
- Twist: (3D position, 3D orientation)
 - + Numerically stable, low dimensional
 - Sensitive to "dt"

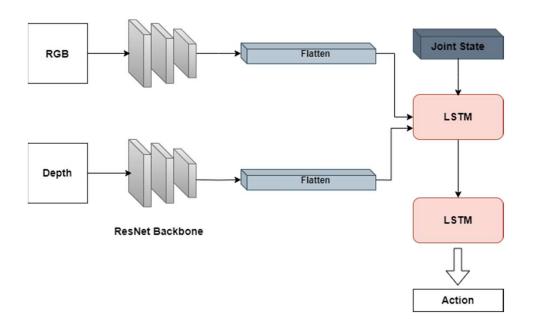
Other Components

- State Space:
 - RGB-D images
 - Joint positions
- Expert Policy:
 - ACRONYM dataset
 - Custom controller, based on inverse Kinematics

Sequence Learning:

- The entire trajectory:
 - Uniform LSTM mode for training and validation
 - Difficulty for batch learning
 - High memory costs
- Subset of trajectory:
 - + Simple batch-learning
 - Inconsistency in LSTM modes

Network Architecture



Components:

- ResNet Backbone: Process images to determine state
- Joint State: Additional source for determining state
- LSTM: To include history

Evaluations

- Ablation Studies:
 - Action Spaces
 - Sequence Learning
- Metrics:
 - Success Rate: Rate of successful grasps
 - Progress Ratio: Progress ratio towards grasp pose

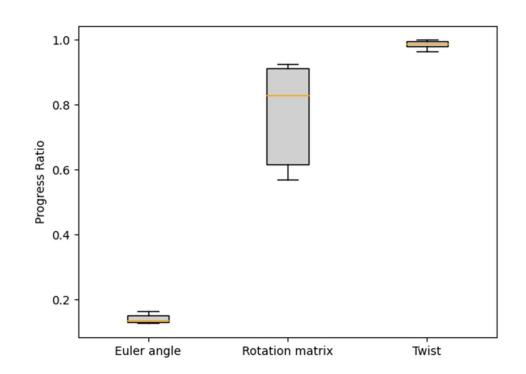
Scenarios:

- 1-object scenario: Picking a bowl in random places
- 10-object scenario: Picking 10 different objects in random places

Ablation experiments: Action Spaces

1-Object Experiment

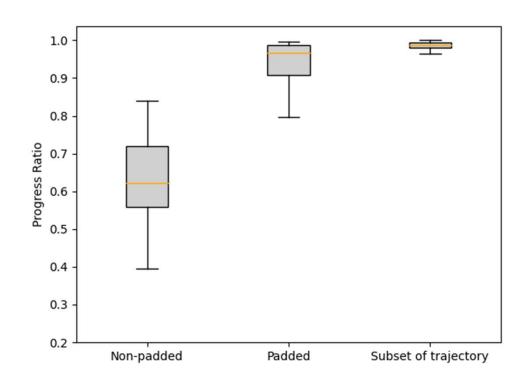
	Progress towards grasp pose	Success ratio
Euler angle	0.12	0.0
Rotation matrix	0.82	0.0
Twist	0.98	0.81



Ablation experiments: Sequence Learning

1-Object Experiment

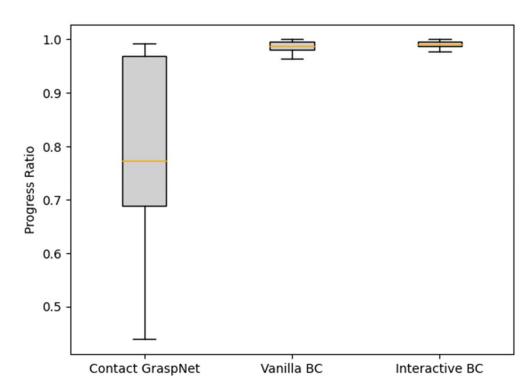
	Progress towards grasp pose	Success ratio
Entire trajectory(non- padded)	0.62	0.0
Entire trajectory(pad ded)	0.94	0.52
Subset of trajectory (25 steps)	0.98	0.81



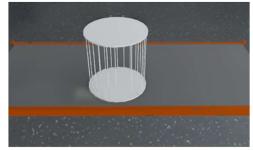
Results

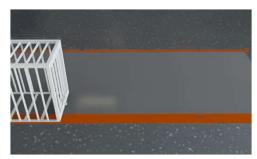
1-Object Experiment

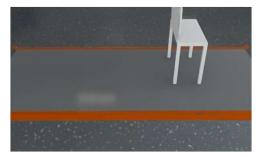
	Progress towards grasp pose	Success ratio
Contact GraspNet	0.81	0.0
Vanilla Behavior Cloning	0.98	0.81
Interactive Behavior Cloning	0.99	0.90



Limitation







10-Object scenario:

- Prolonged training period of 250,000 steps and the collection of over 3000 trajectories (approximately 6 days of training)
- The policy network learned to approach the object, but did not achieve successful grasping.

Conclusion and Future Work

Conclusion:

- Realistic scenario design for mobile manipulation robot grasping
- Grasp-pose estimation baseline underperformed
- Interactive behavior cloning outperformed in single object grasping
- In more complex tasks, successful grasping was unachievable in reasonable time

Future work:

- Adjust the training process to enhance efficiency
- Develop a Hybrid model of grasp pose estimation and policy learning method

References

- 1. Newbury, Rhys, et al. "Deep learning approaches to grasp synthesis: A review" 2023 IEEE Transactions on Robotics. 2023
- 2. SunderSundermeyer, Martin, et al. "Contact-graspnet: Efficient 6-dof grasp generation in cluttered scenes" 2021 IEEE International Conference on Robotics and Automation (ICRA). 2021
- 3. Chisari , Eugenio, et al. "Correct me if i am wrong: Interactive learning for robotic manipulation" 2022 IEEE Robotics and Automation Letters. 2022
- 4. Mandlekar, Ajay, et al. "What matters in learning from offline human demonstrations for robot manipulation" 2021 arXiv preprint arXiv:2108.03298. 2021